Abstract:
The handheld blood glucose meter creates blood glucose records having contextual information to improve filtering of blood glucose records for improved healthcare decisions. The contextual information includes events and associated sub-events. The user selects an event indicator from the plurality of event indicators, and the meter associates the blood glucose measurement with an event that corresponds to the event indicator. The user selects a sub-event indicator from the plurality of sub-event indicators, and the meter associates the blood glucose measurement with a sub-event that corresponds to the sub-event indicator. The user repeats the preceding steps to obtain a plurality of blood glucose measurements with associated events and sub-events. The user selects data filtering, a predetermined range of blood glucose measurements along with an event and sub-event to produce a filter result meeting these criteria.
Abstract:
A computer-implemented method is provided for displaying glucose measurements of a person on a handheld glucose meter. The method includes: determining a current blood glucose measurement for a person from a test strip inserted into a port of the handheld glucose meter; displaying the current glucose measurement on a result screen of the handheld glucose meter immediately following the measurement of the current glucose measurement by the handheld glucose meter; providing an indicium of a logbook screen on the result screen concurrently with the display of the current glucose measurement on the result screen; and displaying the logbook screen in response to a user input received by the handheld glucose meter, where the logbook screen displays the current glucose measurement along with at least two preceding glucose measurements of the person.
Abstract:
A computer-implemented method is provided for a handheld diabetes-management device to establish a data connection with a Continua manager. The method includes: receiving a request to establish a new data connection with a computing device, where the computing device is physically separated from the diabetes-management device and operates as a manager in accordance with IEEE standard 11073; determining whether the diabetes-management device has an existing data connection with a medical device that is physically separated from the diabetes-management device; terminating the existing data connection with the medical device in response to the determination that the diabetes-management device has an existing connection with the medical device; and establishing a new data connection with the computing device in accordance with IEEE standard 11073.
Abstract:
A method includes: receiving, at a computing device, diabetes management data from a diabetes management device, wherein the diabetes management data does not include a blood glucose (bG) measurement; using the computing device, transmitting an indicator of an account and the diabetes management data to a diabetes management server. The method further includes, using the diabetes management server: creating a bG measurement entry for the account in a database, leaving empty a field of the bG measurement entry for a bG measurement in the bG measurement entry based on the diabetes management data not including a bG measurement; and storing the diabetes management data in one or more respective fields of the bG measurement entry. The method further includes, using the diabetes management server, generating a user interface for displaying data stored in the bG measurement entry and at least one other bG measurement entry associated with the account.
Abstract:
A diabetes management system includes a handheld medical device, a mobile computing device, and a diabetes management application. The handheld medical device is configured to measure glucose in a sample of fluid residing in a test strip and associate a measurement time with the glucose measurement. The diabetes management application is configured to request a current device time from the RTC, determine a first device delta time by determining a difference between the current device time and an internal clock time, and associate a first timestamp with a glucose measurement, wherein the first timestamp is equal to the measurement time plus the first device delta time.
Abstract:
A handheld diabetes manager has a graphical user interface for displaying status of an external medical device and includes a port configured to receive a test strip and a blood glucose measurement module. The diabetes manager includes a communications module that selectively communicates via a wireless data link with an external medical device to receive status data pertaining to the operation of the external medical device, and a user interface module in data communication with the blood glucose measurement module and the communications module. The graphical user interface includes a status screen that presents data pertaining to a glucose measure determined by the blood glucose measurement module concurrently with the status data received from the external medical device, such that the status data of the external medical device is presented on the status screen only when the communication module is in data communication with the external medical device.
Abstract:
A diabetes management system includes a handheld medical device, a mobile computing device, and a diabetes management application. The handheld medical device is configured to measure glucose in a sample of fluid residing in a test strip and associate a measurement time with the glucose measurement. The diabetes management application is configured to request a current device time from the RTC, determine a first device delta time by determining a difference between the current device time and an internal clock time, and associate a first timestamp with a glucose measurement, wherein the first timestamp is equal to the measurement time plus the first device delta time.
Abstract:
A handheld diabetes manager communicates with an external insulin pump and includes a port for blood glucose measurement, a blood glucose measurement module, a communications module that selectively communicates wirelessly with the insulin pump, and a user interface module. The user interface module communicates with the blood glucose measurement module and the communications module and operates to provide a graphical user interface on a display of the diabetes manager. The graphical user interface includes a personal data menu screen from which a logbook option can be selected to display a logbook screen, and a trend graph option that can be selected to display a trend graph screen. The logbook screen displays a plurality of time data records. Each time data record includes blood glucose data, bolus insulin data, and carbohydrate data for a corresponding time, and a plurality of data icons indicating corresponding events.
Abstract:
A computer-implemented method is provided for a handheld diabetes-management device to establish a data connection with a Continua manager. The method includes: receiving a request to establish a new data connection with a computing device, where the computing device is physically separated from the diabetes-management device and operates as a manager in accordance with IEEE standard 11073; determining whether the diabetes-management device has an existing data connection with a medical device that is physically separated from the diabetes-management device; terminating the existing data connection with the medical device in response to the determination that the diabetes-management device has an existing connection with the medical device; and establishing a new data connection with the computing device in accordance with IEEE standard 11073.