CLINICAL DECISION SUPPORT SYSTEMS WITH EXTERNAL CONTEXT
    1.
    发明申请
    CLINICAL DECISION SUPPORT SYSTEMS WITH EXTERNAL CONTEXT 审中-公开
    具有外部背景的临床决策支持系统

    公开(公告)号:US20120066000A1

    公开(公告)日:2012-03-15

    申请号:US13320700

    申请日:2010-04-09

    IPC分类号: G06Q50/24

    CPC分类号: G06F19/325 G06Q50/24

    摘要: A clinical decision support (CDS) system comprises a patient treatment histories database (10, 32) and a patient case navigation tool (10, 30) operative to select a patient treatment history from the patient treatment histories database and to display a flowchart representation (50) of at least a portion of the selected patient treatment history. Optionally, the navigation tool (10, 30) is further operative to selectively display a flowchart representation (64, 66) of a portion or all of a patient nonspecific treatment guideline not coinciding with the selected patient treatment history. Optionally, the CDS system further comprises a patient records query engine (10, 40) operative to receive a query and apply same against the patient treatment histories database to retrieve query results, the navigation tool (10, 30) being further operative to generate a query responsive to user input and to display query results retrieved for the query.

    摘要翻译: 临床决策支持(CDS)系统包括患者治疗历史数据库(10,32)和患者病例导航工具(10,30),其可操作以从患者治疗历史数据库中选择患者治疗历史并显示流程图表示( 50)所选择的患者治疗历史的至少一部分。 可选地,导航工具(10,30)还可操作以选择性地显示与所选择的患者治疗历史不一致的患者非特异性治疗指南的一部分或全部的流程图表示(64,66)。 可选地,CDS系统还包括患者记录查询引擎(10,40),其可操作以接收查询并将其应用于患者治疗历史数据库以检索查询结果,导航工具(10,30)进一步操作以产生 查询响应用户输入并显示为查询检索的查询结果。

    PET/CT BASED MONITORING SYSTEM SUPPORTED BY A CLINICAL GUIDELINE NAVIGATOR
    2.
    发明申请
    PET/CT BASED MONITORING SYSTEM SUPPORTED BY A CLINICAL GUIDELINE NAVIGATOR 审中-公开
    基于PET / CT的监测系统由临床导向导管支持

    公开(公告)号:US20120123801A1

    公开(公告)日:2012-05-17

    申请号:US13260533

    申请日:2010-02-11

    IPC分类号: G06Q50/24

    摘要: An oncology monitoring system comprises: an image analysis module (42, 44) configured to perform an oncological monitoring operation based on images of a subject, for example acquired by positron emission tomography (PET) and computed tomography (CT); and a clinical guideline support module (10). The clinical guideline support module is configured to: display a graphical flow diagram (GFD) of a clinical therapy protocol for treating the subject comprising graphical blocks (B0, B1 B2, B3, B4, B5, B21, B211, B22, B221, B222, B223, B23, B231, B232) representing therapeutic or monitoring operations of the clinical therapy protocol including at least one monitoring operation performed by the image analysis module; annotate a graphical block of the graphical flow diagram with subject-specific information pertaining to a therapeutic or monitoring operation represented by the graphical block; and display an annotation (POP) of a graphical block (B211) responsive to selection of the graphical block by a user.

    摘要翻译: 肿瘤监测系统包括:图像分析模块(42,44),其被配置为基于例如通过正电子发射断层摄影(PET)和计算机断层摄影(CT)获取的对象的图像执行肿瘤监测操作; 和临床指南支持模块(10)。 临床指南支持模块被配置为:显示用于治疗受试者的临床治疗方案的图形流程图(GFD),包括图形块(B0,B1B2,B3,B4,B5,B21,B211,B22,B221,B222 ,B223,B23,B231,B232),其代表包括图像分析模块执行的至少一个监视操作的临床治疗方案的治疗或监视操作; 注释图形流程图的图形块,其具有与由图形块表示的治疗或监视操作有关的主题特定信息; 以及响应于用户对所述图形块的选择来显示图形块(B211)的注释(POP)。

    METHOD AND SYSTEM FOR PERSONALIZED GUIDELINE-BASED THERAPY AUGMENTED BY IMAGING INFORMATION
    4.
    发明申请
    METHOD AND SYSTEM FOR PERSONALIZED GUIDELINE-BASED THERAPY AUGMENTED BY IMAGING INFORMATION 审中-公开
    基于图像信息的个性化导向治疗方法与系统

    公开(公告)号:US20110046979A1

    公开(公告)日:2011-02-24

    申请号:US12989805

    申请日:2009-05-04

    IPC分类号: G06Q50/00 G06F17/30

    摘要: When treating a patient, clinical decision support system (CDSS) guidelines are employed to assist a physician in generating a treatment plan. These plans are generated using both imaging and non-imaging data. To accomplish this, the CDSS is interfaced with imaging systems (CADx, CAD, PACS etc.). A data-mining operation is performed to identify relevant patients with similar attributes such as diagnosis, medical history, treatment, etc from imaging and non-imaging data. Natural language processing is employed to extract and encode relevant non-imaging (textual) data from relevant patients' records. Additionally, an image of a current patient is compared to reference images in a patient database to identify relevant patients. Relevant patients are then identified to a user, and the user selects a relevant patient to view detailed information related to medical history, treatment, guidelines, efficacy, and the like.

    摘要翻译: 在治疗患者时,采用临床决策支持系统(CDSS)指南来协助医生生成治疗计划。 这些计划是使用成像和非成像数据生成的。 为了实现这一点,CDSS与成像系统(CADx,CAD,PACS等)接口。 进行数据挖掘操​​作,以从成像和非成像数据中识别具有类似属性的相关患者,如诊断,病史,治疗等。 采用自然语言处理技术从相关患者记录中提取和编码相关非成像(文本)数据。 此外,将当前患者的图像与患者数据库中的参考图像进行比较以识别相关患者。 然后将相关患者识别给用户,并且用户选择相关患者以查看与病史,治疗,指南,疗效等相关的详细信息。

    False positive reduction in computer-assisted detection (CAD) with new 3D features
    6.
    发明授权
    False positive reduction in computer-assisted detection (CAD) with new 3D features 有权
    具有新3D特征的计算机辅助检测(CAD)的虚假积极减少

    公开(公告)号:US07840062B2

    公开(公告)日:2010-11-23

    申请号:US11719634

    申请日:2005-11-21

    IPC分类号: G06K9/00 G01N23/04

    摘要: A method for computer aided detection (CAD) and classification of regions of interest detected within HRCT medical image data includes post-CAD machine learning techniques applied to maximize specificity and sensitivity of identification of a region/volume as being a nodule or non-nodule. The regions are identified by a CAD process, and automatically segmented. A feature pool is identified and extracted from each segmented region, and processed by genetic algorithm to identify an optimal feature subset, which subset is used to train the support vector machine to classify candidate region/volumes found within non-training data.

    摘要翻译: 在HRCT医学图像数据中检测到的计算机辅助检测(CAD)和感兴趣区域的分类方法包括后CAD机器学习技术,其应用于将区域/体积的识别的特异性和敏感性最大化为结节或非结节。 区域由CAD过程识别,并自动分段。 从每个分段区域识别和提取特征池,并通过遗传算法进行处理以识别最优特征子集,该子集用于训练支持向量机以对在非训练数据内发现的候选区域/体积进行分类。

    Video Quality Enhancement and/or Artifact Reduction Using Coding Information From a Compressed Bitstream
    7.
    发明申请
    Video Quality Enhancement and/or Artifact Reduction Using Coding Information From a Compressed Bitstream 审中-公开
    使用来自压缩比特流的编码信息的视频质量增强和/或减少伪像

    公开(公告)号:US20070230918A1

    公开(公告)日:2007-10-04

    申请号:US10599199

    申请日:2005-03-29

    IPC分类号: H04N7/01 H04N7/12 H04N7/26

    摘要: A system and method of processing a digital video signal for display on a display device, includes decoding an encoded digital video signal to produce a decoded digital video signal having a video source format; extracting coding information from the encoded digital video signal; executing a video quality improvement algorithm on the decoded digital video signal having the video source format using the extracted coding information, to produce a processed decoded digital video signal having the video source format; and converting the processed decoded digital video signal from the video source format to a video display format suitable for display on the display device. The system and method enhance the quality and/or reduce video artifacts in a video signal after it is decoded and prior to display on a display device.

    摘要翻译: 一种处理数字视频信号以在显示装置上显示的系统和方法,包括对编码的数字视频信号进行解码以产生具有视频源格式的解码数字视频信号; 从编码的数字视频信号中提取编码信息; 对使用所提取的编码信息的视频源格式的解码数字视频信号执行视频质量改进算法,以产生具有视频源格式的经处理的解码数字视频信号; 并且将经处理的解码数字视频信号从视频源格式转换成适于在显示设备上显示的视频显示格式。 该系统和方法在视频信号被解码之后并且在显示设备上显示之前增强视频信号的质量和/或降低视频伪影。

    Methods for feature selection using classifier ensemble based genetic algorithms
    10.
    发明授权
    Methods for feature selection using classifier ensemble based genetic algorithms 有权
    使用基于分类器集合的遗传算法进行特征选择的方法

    公开(公告)号:US08762303B2

    公开(公告)日:2014-06-24

    申请号:US12441956

    申请日:2007-09-17

    IPC分类号: G06N3/12

    摘要: Methods for performing genetic algorithm-based feature selection are provided herein. In certain embodiments, the methods include steps of applying multiple data splitting patterns to a learning data set to build multiple classifiers to obtain at least one classification result; integrating the at least one classification result from the multiple classifiers to obtain an integrated accuracy result; and outputting the integrated accuracy result to a genetic algorithm as a fitness value for a candidate feature subset, in which genetic algorithm-based feature selection is performed.

    摘要翻译: 本文提供了基于遗传算法的特征选择的方法。 在某些实施例中,所述方法包括将多个数据分割模式应用于学习数据集以构建多个分类器以获得至少一个分类结果的步骤; 整合来自多个分类器的至少一个分类结果以获得综合精度结果; 并将所述综合精度结果输出到遗传算法作为候选特征子集的适应度值,其中执行基于遗传算法的特征选择。