Abstract:
Methods herein may include injecting a cement slurry having an aqueous base fluid, a cement, and a plurality of cellulose nanofibers dispersed in the aqueous base fluid. The plurality of cellulose nanofibers may be present in the slurry in an amount effective to provide a slurry density of not higher than 15 lb/gal.
Abstract:
Methods herein may include injecting a cement slurry having an aqueous base fluid, a cement, and a plurality of cellulose nanofibers dispersed in the aqueous base fluid. The plurality of cellulose nanofibers may be present in the slurry in an amount effective to provide a slurry density of not higher than 15 lb/gal.
Abstract:
Methods of treating a subterranean formation penetrated by a well bore, by providing a treatment fluid comprising a blend including a first amount of particulates having a first average particle size between about 3 mm and 2 cm and a second amount of particulates having a second average size between about 1.6 and 20 times smaller than the first average particle size or a second amount of flakes having a second average size up to 10 times smaller than the first average particle size; by introducing the treatment fluid into the well bore; and by creating a plug with the treatment fluid.
Abstract:
The current application discloses compositions and methods for reducing fluid loss during subterranean operations. CO2 activated swellable elastomers can be used in subterranean operations to reduce fluid loss. In particular, the current application discloses compositions and methods for reducing lost circulation during drilling and drilling related subterranean operations.
Abstract:
A treatment fluid made of mineral acid, viscoelastic surfactant, at least one of a fluoride source and a chelant, and optionally a corrosion inhibitor. A method of combining a mineral acid, viscoelastic surfactant, at least one of a fluoride source and a chelant, and optionally a corrosion inhibitor, in a fluid mixture. A method of contacting a low-temperature formation with a fluid mixture of mineral acid, viscoelastic surfactant, at least one of a fluoride source and a chelant, and optionally a corrosion inhibitor.
Abstract:
A cement for use in wells in which hydrogen sulfide is present, comprises elastomer particles. In the event of cement-matrix failure, or bonding failure between the cement/casing interface or the cement/borehole-wall interface, the elastomer particles swell when contacted by hydrogen sulfide. The swelling seals voids in the cement matrix, or along the bonding interfaces, thereby restoring zonal isolation.
Abstract:
The composition includes a pH adjusting agent and a precipitation-control agent. The pH adjusting agent provides the hydrolysis of degradable fibers at a temperature of no more than 50° C. and comprises substances that may provide and maintain a high pH environment. The precipitation-control agent allows maximally delaying or completely suppressing the formation and deposition of precipitate during the hydrolysis of the degradable components in the treatment fluid A method of treating an subterranean formations penetrated by a wellbore with the additives described herein comprises providing a treatment fluid comprising a base mixture and a degradable substance, with additionally added degradable materials, and injecting the prepared treatment fluid into the subterranean formation.
Abstract:
Methods herein may include injecting a cement slurry having an aqueous base fluid, a cement, and a plurality of cellulose nanofibers dispersed in the aqueous base fluid. The plurality of cellulose nanofibers may be present in the slurry in an amount effective to provide a slurry density of not higher than 15 lb/gal.
Abstract:
Methods of treating a subterranean formation penetrated by a well bore, by providing a treatment fluid comprising a blend including a first amount of particulates having a first average particle size between about 3 mm and 2 cm and a second amount of particulates having a second average size between about 1.6 and 20 times smaller than the first average particle size or a second amount of flakes having a second average size up to 10 times smaller than the first average particle size; by introducing the treatment fluid into the well bore; and by creating a plug with the treatment fluid.
Abstract:
Adding shapeable particles to drilling fluids may be useful for curing lost circulation. When the shapeable particles are pumped downhole through the drillpipe and the drillbit, they may deform when exposed to shear as they pass through the drillbit nozzles. While circulating back toward the surface they may relax at least partially and assume the shape of cracks or voids they encounter along the formation wall, thereby stopping losses.