Abstract:
Systems and methods for magnetically autonomously clamping a downhole component in a select direction of a borehole casing. The systems can include a sensor package that obtains a downhole measurement in a position in a cased borehole. The systems can include an integral magnetic clamp that removably clamps the downhole component (e.g., a downhole seismic shuttle) to the cased borehole. The systems can include a directional detector that outputs a select direction of the cased borehole relative to the downhole component. The systems can include a downhole controller that activates a portion of the integral magnetic clamp of the downhole component closest to the select direction output by the directional detector.
Abstract:
Systems and methods for magnetically autonomously clamping a downhole component in a select direction of a borehole casing. The systems can include a sensor package that obtains a downhole measurement in a position in a cased borehole. The systems can include an integral magnetic clamp that removably clamps the downhole component (e.g., a downhole seismic shuttle) to the cased borehole. The systems can include a directional detector that outputs a select direction of the cased borehole relative to the downhole component. The systems can include a downhole controller that activates a portion of the integral magnetic clamp of the downhole component closest to the select direction output by the directional detector.
Abstract:
A sensor flap for a downhole tool. The downhole tool is positionable in a wellbore penetrating a subterranean formation. The sensor flap includes a sensor housing and at least one sensor. The sensor housing is operatively connectable to the downhole tool. The sensor housing is movably positionable between a retracted position in the downhole tool and an extended position in contact with a wall of the wellbore. The sensor is positionable in the sensor housing, and may include a seismic detector to measure seismic activity when the sensor housing is in contact with the wall of the wellbore.
Abstract:
A sensor flap for a downhole tool. The downhole tool is positionable in a wellbore penetrating a subterranean formation. The sensor flap includes a sensor housing and at least one sensor. The sensor housing is operatively connectable to the downhole tool. The sensor housing is movably positionable between a retracted position in the downhole tool and an extended position in contact with a wall of the wellbore. The sensor is positionable in the sensor housing, and may include a seismic detector to measure seismic activity when the sensor housing is in contact with the wall of the wellbore.
Abstract:
A sensor array is positionable in a wellbore penetrating a subterranean formation. The sensor array includes a plurality of seismic sensors disposable about a perimeter of the wellbore and coupleable to a signal measurer with a configuration to provide three component seismic signal measurement within the wellbore. At least two of the seismic sensors are located at different azimuthal angles relative to one another and oriented tangentially to a longitudinal axis of the wellbore so as to receive tangential components of wellbore seismic signals to the exclusion of longitudinal and radial components of the wellbore seismic signals.
Abstract:
A sensor array is positionable in a wellbore penetrating a subterranean formation. The sensor array includes a plurality of seismic sensors disposable about a perimeter of the wellbore and coupleable to a signal measurer with a configuration to provide three component seismic signal measurement within the wellbore. At least two of the seismic sensors are located at different azimuthal angles relative to one another and oriented tangentially to a longitudinal axis of the wellbore so as to receive tangential components of wellbore seismic signals to the exclusion of longitudinal and radial components of the wellbore seismic signals.