Abstract:
A curved substrate with a film includes a substrate having a first main surface, a second main surface and an end surface, and an antiglare film provided on the first main surface. The substrate has a flat portion and a bent portion. A value obtained by dividing a reflected-image diffusibility index value R of the bent portion by the sum of the reflected-image diffusibility index value R of the bent portion and a reflected-image diffusibility index value R of the flat portion is 0.3 or higher and 0.8 or less.
Abstract:
This method allows a coating product to be applied to a component (13) being moved by a conveyor (12), along which conveyor at least one spray (62.1, 62.2) is arranged. It comprises automated steps involving determining, within a fixed frame of reference (X12, Y12, Z12), the coordinates of the points (A1, B1, C1, A2, B2, C2) of one or more lines (L1, L2) of the exterior profile of the component which are distributed along the length of the component, in assigning to each spray the points of each exterior profile line that lie within its field of spraying, in identifying, from among the points assigned to each spray, the point (A1, A2; B1, B2) closest to the spray for each exterior profile line, in determining, for each spray, a line (L3, L4) to follow that passes through all the points (A1, A2, B1, B2) closest to the spray as identified in step c), and in establishing a reference path for each spray according to the points on the line (L3, L4) to follow so that the application distance of each spray is adjusted automatically and independently according to the exterior profile of the component.
Abstract:
An apparatus and method for coating a substrate using one or more liquid raw materials, includes: at least one atomizer for atomizing the one or more liquid raw materials into droplets, charging means for electrically charging the droplets during or after the atomization and a deposition chamber in which the droplets are deposited on the substrate, the deposition chamber being provided with one or more electric fields for guiding the electrically charged droplets on the substrate. According to the invention there is a charging chamber arranged upstream of the deposition chamber and provided with charging means for electrically charging the droplets.
Abstract:
An impingement plate atomizer apparatus includes an electrostatically charged longitudinal member having an upper surface sized and shaped to receive a liquid cryogen thereon, a lower surface opposite to the upper surface, and at least one hole extending through the longitudinal member; an ultrasonic transducer in contact with the longitudinal member for providing ultrasonic energy thereto for atomizing the liquid cryogen into an electrostatically charged cryogen fog. A method is also provided for providing an electrostatically charged cryogen fog.
Abstract:
An apparatus and method are disclosed for efficiently applying a test substance to a test unit by atomizing a solution or suspension of the test substance and electrostatically attracting the atomized droplets to the test unit. This apparatus and method can be used to apply small quantities of test substances to organisms such as plants or insects to assay their utility as crop protection agents.
Abstract:
The present invention is directed to electrostatic chucks, methods for their use, the electrostatic deposition of particles on an objects, and the objects themselves that have been subjected to electrostatic deposition. In one aspect, the present invention provides an electrostatic chuck for electrostatically attracting an object or objects wherein the object is used in chemical or pharmaceutical assaying or manufacturing, and optionally wherein the object is less than or equal to one millimeter in average width or diameter. The objects can be pharmaceutical substrates, for example, such as a pharmaceutical tablet. Additional embodiments of the invention provide chucks and their use to electrostatically attract particles, such as a pharmaceutically active ingredient, to a substrate, such as a tablet. In one aspect, the electrostatic chuck comprises a floating electrode, and is used to selectively attract particles to a substrate above the floating electrode, thereby providing for charge imaging for the deposition of particles in a selected image. Additionally, the invention provides an electrostatic chuck comprising a sensing electrode for sensing the number of particles attracted to the chuck, thereby providing for deposition of an accurate amount of particles. Furthermore, the present invention provides objects having selected areas in which particles are applied to the object via electrostatic means.
Abstract:
An electrostatic coating facility for an electroconductive coating material comprising a coating machine disposed in a coating zone while being grounded to the earth, an insulated conveyer disposed in the coating zone for conveying an object to be coated in an electrically insulated state and applying a high voltage to the object, an entering conveyer disposed for carrying the object into the coating zone, a delivery conveyer for carrying the coated object out of the coating zone, and a relay transfer device interposed between the insulated conveyer 1 and the entering conveyer or the delivery conveyer for transferring the object in an electrically insulated state while keeping a required insulation distance between each of them. Aqueous coating material free from public pollution can be used with no troubles for taking insulative measures on the side of the coating machine and without worry of spark discharge.
Abstract:
Apparatus (74) and method are provided for electrostatically depositing particles (64) of a first material onto a sheet (18) of a second material, and for electrostatically neutralizing the residual charge. The apparatus (74) includes a particle generator (20) for aspirating particles (64) of the first material, electrodes (60a and 60b) for electrostatically charging the particles (64) to a first polarity, an electrode (75) for electrostatically recharging a portion of the particles (64) to the opposite polarity, and a depositing chamber (22) for electrostatically depositing the particles of the opposite polarity subsequent to depositing the particles of the first polarity.
Abstract:
An electrostatic powder coating method and apparatus therefor, in which an auxiliary electrode is disposed in the vicinity of a desired coating surface of an object to be coated, a gun for performing electrostatic powder coating is directed to the object to be coated and the auxiliary electrode, a DC electric field is formed between the gun, the auxiliary electrode and the object to be coated, the auxiliary electrode is electrically charged to the same polarity as the gun so as to form an auxiliary electric field between the auxiliary electrode and the desired coating surface of the object to be coated whereby a powder coating material is transferred to be applied onto the desired coating surface by the electric field.
Abstract:
Relatively small parts are powder coated without fixturing by placing the parts on a heat conductive surface and the powders are distributed over the exposed surfaces of the parts. The powders on the surfaces of the parts are heated to fuse the powders, as by radiant heat, while the heat conductive surface is kept at a temperature below that at which overspray powders on the conductive surface will become tacky. In a preferred embodiment, the heat conductive surface is an endless belt which advances the parts past a powder coating station, past a top heating-bottom cooling station and then to discharge.