Digital, self-diagnosis, sensing intelligent layer integrating active and passive monitoring and method

    公开(公告)号:US12000799B1

    公开(公告)日:2024-06-04

    申请号:US18400246

    申请日:2023-12-29

    CPC classification number: G01N29/2437

    Abstract: A digital, self-diagnosis, sensing intelligent layer integrating active and passive monitoring, including: a capacitance testing unit, configured to charge a to-be-tested piezoelectric transducer by generating a step signal, and determine a transition moment, to obtain a free capacitance value of the to-be-tested piezoelectric transducer; a frequency testing unit, to charge the to-be-tested piezoelectric transducer by generating sinusoidal signals of different frequencies, and detect a resonant frequency according to the transition moment; an active and passive monitoring module, to obtain analog response signals in an active mode and a passive mode, and convert the analog response signals into digital response signals for transmission; and a main control module, to transmit a self-diagnosis result and the digital response signals to a guided wave host. The intelligent layer integrates active damage scanning and passive impact monitoring while implementing self-diagnosis for a piezoelectric transducer state.

    Structure for monitoring stability of existing subgrade/slope and construction method thereof

    公开(公告)号:US10684112B2

    公开(公告)日:2020-06-16

    申请号:US16074647

    申请日:2017-09-29

    Abstract: The structure has a subgrade or slope to be monitored and strip-shaped smart geosynthetic material compound devices. The strip-shaped smart geosynthetic material compound devices are buried to run through a subgrade or slope predicted slip crack surface. Gaps between the strip-shaped smart geosynthetic material compound devices and borehole inner walls are filled so that the force environment of the strip-shaped smart geosynthetic material compound devices is close to the subgrade or slope internal environment. Each strip-shaped smart geosynthetic material compound device has a strip-shaped geogrid, lead, and heat shrinkable tube. The lead is arranged in a length direction of the geogrid, and the lead and geogrid are fixedly connected at an interval of a set distance, with each fixed point forming a measuring point. The geogrid is wrapped in the heat shrinkable tube, and a free end of the lead is drawn out of the heat shrinkable tube.

    Small angle laser scatterometer with temperature-pressure-controllable sample cell and characterization method

    公开(公告)号:US11067505B2

    公开(公告)日:2021-07-20

    申请号:US16753398

    申请日:2019-03-18

    Abstract: A small angle laser scatterometer with a temperature-pressure-controllable sample cell and a characterization method, the scatterometer formed by sequentially arranging a laser source, an adjustable attenuator, a beam expanding lens, a polarizer, the temperature-pressure-controllable sample cell, an analyzer, a transmission-type projection screen and an image acquisition device. The temperature-pressure-controllable sample cell is composed of a visual autoclave, a temperature control component, a rapid cooling component and a pressure control component. An evolution process of microstructures of polymer materials in specific atmosphere and rapid temperature and pressure changing environments on a scale of 0.5 μm to 10 μm. Researching a condensed state evolution law of the polymer materials in high-pressure environments can provide a process solution for regulating crystallization and phase separation of the polymer materials and new thought for further and deep reveal of a polymer material crystallization mechanism.

    Microscopic observation system with temperature-pressure-controllable sample cell and methods

    公开(公告)号:US11060965B2

    公开(公告)日:2021-07-13

    申请号:US16753360

    申请日:2019-03-18

    Abstract: A microscopic observation system with a temperature-pressure-controllable sample cell and methods. The system can be configured to perform common optical microscopic observation and polarizing microscopic observation. The system is composed of a visual autoclave, a temperature control component, a rapid cooling component, a pressure control component and an optical imaging system, and can be configured to observe an evolution process of microstructures of polymer materials in specific atmosphere and rapid temperature and pressure changing environments in a scale of 1 μm-1 cm. A novel characterization means for researching a condensed state evolution law of polymers in high-pressure environments, and also a new thought for deep reveal of the polymer crystallization mechanism and regulation of crystallization and phase separation behaviors of the polymer materials.

Patent Agency Ranking