Abstract:
A method for transitioning gameplay is provided, the method including: receiving a signal to interrupt gameplay of a video game, the gameplay being presented on a head-mounted display; in response to receiving the signal, transitioning the gameplay from an active state to a paused state; wherein transitioning the gameplay includes identifying an intensity of a gameplay aspect, and progressively reducing the intensity of the gameplay aspect before entering the paused state.
Abstract:
Systems and methods for executing a game presented on a screen of a head mounted display include executing a game. The execution of the game renders interactive scenes of the game on the screen of the HMD. Images identifying a shift in gaze direction of the user wearing the HMD, are received. The gaze shift is detected during viewing of the interactive scenes presented on the HMD screen. Real-world images that are in line with the gaze direction of the user, are captured from a forward-facing camera of the HMD. A portion of the screen is transitioned from a non-transparent mode to a semi-transparent mode in response to the shift in the gaze direction such that at least part of the real world images are presented in the portion of the screen rendering the interactive scenes of the game. The transparent mode is discontinued after a period of time.
Abstract:
Methods, systems, and computer programs are presented for managing the display of images on a head mounted device (HMD). One method includes an operation for tracking the gaze of a user wearing the HMD, where the HMD is displaying a scene of a virtual world. In addition, the method includes an operation for detecting that the gaze of the user is fixed on a predetermined area for a predetermined amount of time. In response to the detecting, the method fades out a region of the display in the HMD, while maintaining the scene of the virtual world in an area of the display outside the region. Additionally, the method includes an operation for fading in a view of the real world in the region as if the HMD were transparent to the user while the user is looking through the region. The fading in of the view of the real world includes maintaining the scene of the virtual world outside the region.
Abstract:
A sensor generates signals representing whether a computer game headset is being worn properly so that the wearer may be advised. The sensor may be a pressure sensor or motion sensor or stretch sensor on the headset, or it may be a camera that images the wearer and uses image recognition to determine if the headset is on correctly.
Abstract:
A method for transitioning gameplay is provided, the method including: receiving a signal to interrupt gameplay of a video game, the gameplay being presented on a head-mounted display; in response to receiving the signal, transitioning the gameplay from an active state to a paused state; wherein transitioning the gameplay includes identifying an intensity of a gameplay aspect, and progressively reducing the intensity of the gameplay aspect before entering the paused state.
Abstract:
Methods and systems for using a position of a mobile device with an integrated display as an input to a video game or other presentation are presented. Embodiments include rendering an avatar on a mobile device such that it appears to overlay a competing user in the real world. Using the mobile device's position, view direction, and the other user's mobile device position, an avatar (or vehicle, etc.) is depicted at an apparently inertially stabilized location of the other user's mobile device or body. Some embodiments may estimate the other user's head and body positions and angles and reflect them in the avatar's gestures.
Abstract:
Methods, apparatus, and computer programs for simulating the source of sound are provided. One method includes operations for determining a location in space of the head of a user utilizing face recognition of images of the user. Further, the method includes an operation for determining a sound for two speakers, and an operation for determining an emanating location in space for the sound, each speaker being associated with one ear of the user. The acoustic signals for each speaker are established based on the location in space of the head, the sound, the emanating location in space, and the auditory characteristics of the user. In addition, the acoustic signals are transmitted to the two speakers. When the acoustic signals are played by the two speakers, the acoustic signals simulate that the sound originated at the emanating location in space.
Abstract:
A handheld device is provided, comprising: a sensor configured to generate sensor data for determining and tracking a position and orientation of the handheld device during an interactive session of an interactive application presented on a main display, the interactive session being defined for interactivity between a user and the interactive application; a communications module configured to send the sensor data to a computing device, the communications module being further configured to receive from the computing device a spectator video stream of the interactive session that is generated based on a state of the interactive application and the tracked position and orientation of the handheld device, the state of the interactive application being determined based on the interactivity between the user and the interactive application; a display configured to render the spectator video stream.
Abstract:
One or more chat servers receives voice signals and pose (location and orientation) signals from devices such as VR headsets associated with respective chat participants. For each participant, the server renders a single stream representing the voices of the other participants, with the voice data in each stream being modified to account for the orientation of the head of the receiving participant. The server sends the streams to the participants for whom the streams are tailored. The voice information representing the chat of the other participants in a stream intended for a particular participant can also be modified to account for the distances between participants and orientations of speakers' heads relative to the particular participant for whom the stream is tailored.
Abstract:
A system and method of tracking a location of a head mounted display and generating additional virtual reality scene data to provide the user with a seamless virtual reality experience as the user interacts with and moves relative to the virtual reality scene. An initial position and pose of the HMD is determined using a camera or similar sensor mounted on or in the HMD. As the HMD is moved into a second position and pose, images of two or more fixed points are captured by the camera or sensor to determine a difference in position and pose of the HMD. The difference in position and pose of the HMD is used to predict corresponding movement in the virtual reality scene and generate corresponding additional virtual reality scene data for rendering on the HMD.