Abstract:
An imaging device includes an exposure control unit, a determination unit, and an illuminance calculation unit. The exposure control unit is configured to control a plurality of exposure times. The determination unit is configured to determine whether or not saturation occurs using at least one data item of a plurality of data items obtained during the plurality of exposure times. The illuminance calculation unit is configured to calculate, if the determination unit determines that the saturation occurs, an illuminance using a data item different from the at least one data item used in the determination.
Abstract:
An imaging device includes an exposure control unit, a determination unit, and an illuminance calculation unit. The exposure control unit is configured to control a plurality of exposure times. The determination unit is configured to determine whether or not saturation occurs using at least one data item of a plurality of data items obtained during the plurality of exposure times. The illuminance calculation unit is configured to calculate, if the determination unit determines that the saturation occurs, an illuminance using a data item different from the at least one data item used in the determination.
Abstract:
An imaging device includes an exposure control unit, a determination unit, and an illuminance calculation unit. The exposure control unit is configured to control a plurality of exposure times. The determination unit is configured to determine whether or not saturation occurs using at least one data item of a plurality of data items obtained during the plurality of exposure times. The illuminance calculation unit is configured to calculate, if the determination unit determines that the saturation occurs, an illuminance using a data item different from the at least one data item used in the determination.
Abstract:
An imaging device includes an exposure control unit, a determination unit, and an illuminance calculation unit. The exposure control unit is configured to control a plurality of exposure times. The determination unit is configured to determine whether or not saturation occurs using at least one data item of a plurality of data items obtained during the plurality of exposure times. The illuminance calculation unit is configured to calculate, if the determination unit determines that the saturation occurs, an illuminance using a data item different from the at least one data item used in the determination.
Abstract:
The present technology relates to a solid-state image sensor, an imaging control method, a signal processing method, and an electronic apparatus that suppress the deterioration of image quality, which is caused by the difference of sensitivity between pixels. A solid-state image sensor includes: a pixel array unit including a plurality of pixels arranged, the plurality of pixels including a plurality of kinds of pixels, the plurality of kinds of pixels including a first pixel and a second pixel, the first pixel having the highest sensitivity, the second pixel having a sensitivity lower than the sensitivity of the first pixel; and a control unit that controls at least one of an analog gain and exposure time of/for the respective pixels depending on a ratio between the sensitivities of the first pixel and the second pixel. The present technology is applicable to a solid-state image sensor such as a CMOS image sensor.
Abstract:
An imaging device includes an exposure control unit, a determination unit, and an illuminance calculation unit. The exposure control unit is configured to control a plurality of exposure times. The determination unit is configured to determine whether or not saturation occurs using at least one data item of a plurality of data items obtained during the plurality of exposure times. The illuminance calculation unit is configured to calculate, if the determination unit determines that the saturation occurs, an illuminance using a data item different from the at least one data item used in the determination.