Abstract:
A semiconductor device includes: an element array portion in which unit elements are disposed in a matrix; and a signal processing portion including a signal processing circuit executing predetermined signal processing based on unit signals outputted from the circuit elements, respectively, every column, in which a function of the signal processing circuit is controlled in such a way that power consumption of the signal processing circuit concerned corresponding to the unit elements each not required becomes lower in a phase of an element selection mode in which only information on a part of the unit pixels for one row in the element array portion is required than in a phase of a normal operation mode.
Abstract:
A solid-state imaging device includes: a pixel section wherein pixels including photoelectric conversion devices are arranged in a matrix; and a pixel driving section including a row selection circuit which controls the pixels to perform an electronic shutter operation and readout of the pixel section. The row selection circuit has a function of selecting a readout row from which a signal is read out and a shutter row on which reset is performed by discharging charge accumulated in the photoelectric conversion devices, in accordance with address and control signals. The row selection circuit can set, in accordance with the address and control signals, in the pixels of the selected row, at least a readout state, a discharge state where a smaller amount of the charge accumulated in the photoelectric conversion devices than the reset is discharged, an electronic shutter state, and a charge state where the charge is accumulated in the photoelectric conversion devices.
Abstract:
The present disclosure relates to a solid-state imaging device, a signal processing method therefor, and an electronic apparatus enabling sensitivity correction in which a sensitivity difference between solid-state imaging devices is suppressed. The solid-state imaging device includes a pixel unit in which one microlens is formed for a plurality of pixels in a manner such that a boundary of the microlens coincides with boundaries of the pixels. The correction circuit corrects a sensitivity difference between the pixels inside the pixel unit based on a correction coefficient. The present disclosure is applicable to, for example, a solid-state imaging device and the like.
Abstract:
An imaging device includes an exposure control unit, a determination unit, and an illuminance calculation unit. The exposure control unit is configured to control a plurality of exposure times. The determination unit is configured to determine whether or not saturation occurs using at least one data item of a plurality of data items obtained during the plurality of exposure times. The illuminance calculation unit is configured to calculate, if the determination unit determines that the saturation occurs, an illuminance using a data item different from the at least one data item used in the determination.
Abstract:
An imaging device includes an exposure control unit, a determination unit, and an illuminance calculation unit. The exposure control unit is configured to control a plurality of exposure times. The determination unit is configured to determine whether or not saturation occurs using at least one data item of a plurality of data items obtained during the plurality of exposure times. The illuminance calculation unit is configured to calculate, if the determination unit determines that the saturation occurs, an illuminance using a data item different from the at least one data item used in the determination.
Abstract:
A semiconductor device includes: an element array portion in which unit elements are disposed in a matrix; and a signal processing portion including a signal processing circuit executing predetermined signal processing based on unit signals outputted from the circuit elements, respectively, every column, in which a function of the signal processing circuit is controlled in such a way that power consumption of the signal processing circuit concerned corresponding to the unit elements each not required becomes lower in a phase of an element selection mode in which only information on a part of the unit pixels for one row in the element array portion is required than in a phase of a normal operation mode.
Abstract:
An imaging device includes an exposure control unit, a determination unit, and an illuminance calculation unit. The exposure control unit is configured to control a plurality of exposure times. The determination unit is configured to determine whether or not saturation occurs using at least one data item of a plurality of data items obtained during the plurality of exposure times. The illuminance calculation unit is configured to calculate, if the determination unit determines that the saturation occurs, an illuminance using a data item different from the at least one data item used in the determination.
Abstract:
The present disclosure relates to a solid-state imaging device, a signal processing method therefor, and an electronic apparatus enabling sensitivity correction in which a sensitivity difference between solid-state imaging devices is suppressed. The solid-state imaging device includes a pixel unit in which one microlens is formed for a plurality of pixels in a manner such that a boundary of the microlens coincides with boundaries of the pixels. The correction circuit corrects a sensitivity difference between the pixels inside the pixel unit based on a correction coefficient. The present disclosure is applicable to, for example, a solid-state imaging device and the like.
Abstract:
An imaging device includes an exposure control unit, a determination unit, and an illuminance calculation unit. The exposure control unit is configured to control a plurality of exposure times. The determination unit is configured to determine whether or not saturation occurs using at least one data item of a plurality of data items obtained during the plurality of exposure times. The illuminance calculation unit is configured to calculate, if the determination unit determines that the saturation occurs, an illuminance using a data item different from the at least one data item used in the determination.
Abstract:
A power supply device that switches one of a first power supply, a second power supply, and a third power supply, all of which supply power to an auxiliary device, to a transfer gate in a CMOS image sensor having a photodiode and outputs the corresponding power to the transfer gate is disclosed. The device includes: a first transistor driven by the second power supply and outputting power of the second power supply to the transfer gate; a second transistor driven by the second power supply and outputting power of the first power supply to the transfer gate; a third transistor driven by the third power supply and outputting power of the third power supply to the transfer gate; and a fourth transistor located before the second transistor, driven by the first power supply, and outputting power of the first power supply to a source of the second transistor.