Abstract:
A method of adjusting a lens may include adjusting the lens at a first focus position, and acquiring a first image of a scene through the lens. The method may further include adjusting the lens at a second focus position, and acquiring a second image of the same scene through the lens. In addition, the method may include producing respective power spectra of the first and second images, and producing a criterion representing the ratio of the power spectra to estimate a focus error of the lens.
Abstract:
In an embodiment, a method includes: receiving data signals from a plurality of pixels of an array of pixels; generating a plurality of signal-to-noise ratios by determining signal-to-noise ratios for each respective pixel of the plurality of pixels on the basis of the data signals received from the respective pixel; and filtering the data signals received from each pixel of the plurality of pixels by using an adaptive filter configured on the basis of the plurality of the signal-to-noise ratios to generate filtered data signals.
Abstract:
In an embodiment, a method includes: receiving data signals from a plurality of pixels of an array of pixels; generating a plurality of signal-to-noise ratios by determining signal-to-noise ratios for each respective pixel of the plurality of pixels on the basis of the data signals received from the respective pixel; and filtering the data signals received from each pixel of the plurality of pixels by using an adaptive filter configured on the basis of the plurality of the signal-to-noise ratios to generate filtered data signals.
Abstract:
A method for detecting at least one object in an image including a pixel array, by means of an image processing device, including searching out the silhouette of the object in the image only if pixels of the image are at the minimum or maximum level.
Abstract:
The present description concerns a system for determining a depth image of a scene, configured to project a spot pattern onto the scene and acquire an image of the scene; determining I and Q values of the image pixels; determining, for each pixel, at least one confidence value to form a confidence image; determining the local maximum points of the confidence image having a confidence value greater than a first threshold; selecting, for each local maximum point, pixels around the local maximum point having a confidence value greater than a second threshold; determining a value Imoy equal to the average of the I values of the selected pixels and a value Qmoy equal to the average of the Q values of the selected pixels; and determining the depth of the local maximum point based on values Imoy and Qmoy.
Abstract:
A method is for evaluating a coverage factor of a photon emission cone of a time of flight sensor. The method may include the steps of assigning a reference curve to the sensory providing a photon flux intensity as a function of time of flight; and acquiring a time of flight and a corresponding flux intensity with the sensor. The method may also include reading the intensity provided by the reference curve for the acquired time of flight, and providing an indication of the coverage factor based on the ratio between the acquired intensity and the read intensity.
Abstract:
A method includes: receiving data signals from a plurality of pixels of an array of pixels; generating a plurality of signal-to-noise ratios by determining signal-to-noise ratios for each respective pixel of the plurality of pixels on the basis of the data signals received from the respective pixel; and filtering the data signals received from each pixel of the plurality of pixels by using an adaptive filter configured on the basis of the plurality of the signal-to-noise ratios to generate filtered data signals.
Abstract:
A method comprises, for each pixel of a depth map, acquiring samples and calculating a distance, and defining a window of N*N pixels with this image pixel at the center, N being an odd integer equal to or greater than 3, and, for each window, classifying the pixels of the window into groups, based on a threshold and distances calculated, calculating for each group, a number of pixels in the group, a confidence factor of the group equal to a sum of the confidence factors of the pixels each determined from the samples acquired for the pixel, and scanning the window from the central pixel by comparing, for each pixel, the confidence factor of the group of the pixel with a threshold and the number of pixels of the group of the pixel with another threshold, and determining whether the central pixel is retained, replaced or discarded.
Abstract:
A time-of-flight sensor includes a light emitting device configured to emit light rays toward a scene and a photosensitive pixel matrix configured to receive light signals reflected from the scene and to generate an image that includes dots associated with the light signals reflected from the scene. Each dot covers a number of pixels of the image. A processing unit is configured to, for each dot of the image, partition the pixels of the dot into at least one group of pixels and, for each group of pixels, compute a representative value of distance values of the pixels of this group. The representative distance value can then be applied to each pixel of the group of pixels.
Abstract:
A method of adjusting a lens may include adjusting the lens at a first focus position, and acquiring a first image of a scene through the lens. The method may further include adjusting the lens at a second focus position, and acquiring a second image of the same scene through the lens. In addition, the method may include producing respective power spectra of the first and second images, and producing a criterion representing the ratio of the power spectra to estimate a focus error of the lens.