Abstract:
Identical planar electronic components are stacked in an assembly. Each component has two contact metallizations positioned on edges of a same surface of the component. The components are stacked along a common axis. Each successive component is rotated about the common axis by a fixed angle. A value of the fixed angle is selected to position, side by side, the contact metallization of one component and the contact metallization of another next component adjacent to each other in the stack. Electrical connections are provided between two adjacent contact metallizations.
Abstract:
A battery structure has structure anode and cathode contacts on a front face and on a rear face. The battery structure includes a battery having battery anode and cathode contacts only on a front face thereof. A film including a conductive layer and an insulating layer jackets the battery. The conductive layer extends over the battery anode and cathode contacts and is interrupted therebetween. Openings are provided in the insulating layer on the front and rear faces of the battery structure to form the structure anode and cathode contacts of the battery structure.
Abstract:
A self-supporting thin-film battery is manufacture by forming on the upper surface of a support substrate a vertical active stack having as a lower layer a metal layer having formed therein a first contact terminal of a first polarity of the battery and having formed therein as an upper layer a metal layer having a second contact terminal of a second polarity of the battery. A support film is then bonded to an upper surface of the upper layer. The lower layer is the separated from the substrate by projecting a laser beam through the substrate from a lower surface thereof to impinge on the lower layer.
Abstract:
A battery structure has structure anode and cathode contacts on a front face and on a rear face. The battery structure includes a battery having battery anode and cathode contacts only on a front face thereof. A film including a conductive layer and an insulating layer jackets the battery. The conductive layer extends over the battery anode and cathode contacts and is interrupted therebetween. Openings are provided in the insulating layer on the front and rear faces of the battery structure to form the structure anode and cathode contacts of the battery structure.
Abstract:
A self-supporting thin-film battery is manufacture by forming on the upper surface of a support substrate a vertical active stack having as a lower layer a metal layer having formed therein a first contact terminal of a first polarity of the battery and having formed therein as an upper layer a metal layer having a second contact terminal of a second polarity of the battery. A support film is then bonded to an upper surface of the upper layer. The lower layer is the separated from the substrate by projecting a laser beam through the substrate from a lower surface thereof to impinge on the lower layer.
Abstract:
Identical planar electronic components are stacked in an assembly. Each component has two contact metallizations positioned on edges of a same surface of the component. The components are stacked along a common axis. Each successive component is rotated about the common axis by a fixed angle. A value of the fixed angle is selected to position, side by side, the contact metallization of one component and the contact metallization of another next component adjacent to each other in the stack. Electrical connections are provided between two adjacent contact metallizations.
Abstract:
A self-supporting thin-film battery is manufacture by forming on the upper surface of a support substrate a vertical active stack having as a lower layer a metal layer having formed therein a first contact terminal of a first polarity of the battery and having formed therein as an upper layer a metal layer having a second contact terminal of a second polarity of the battery. A support film is then bonded to an upper surface of the upper layer. The lower layer is the separated from the substrate by projecting a laser beam through the substrate from a lower surface thereof to impinge on the lower layer.
Abstract:
A battery structure has structure anode and cathode contacts on a front face and on a rear face. The battery structure includes a battery having battery anode and cathode contacts only on a front face thereof. A film including a conductive layer and an insulating layer jackets the battery. The conductive layer extends over the battery anode and cathode contacts and is interrupted therebetween. Openings are provided in the insulating layer on the front and rear faces of the battery structure to form the structure anode and cathode contacts of the battery structure.
Abstract:
In manufacturing a lithium battery, a plasma deposition of a layer of LiPON is made on a structure that includes an anode contact zone and a cathode contact zone. Before making the deposition of layer of LiPON, a conductive portion is deposited to short the anode contact zone to the cathode contact zone. After the deposition of the layer of LiPON in completed, the conductive portion is cut to sever the short between the anode and cathode contact zones.
Abstract:
A self-supporting thin-film battery is manufacture by forming on the upper surface of a support substrate a vertical active stack having as a lower layer a metal layer having formed therein a first contact terminal of a first polarity of the battery and having formed therein as an upper layer a metal layer having a second contact terminal of a second polarity of the battery. A support film is then bonded to an upper surface of the upper layer. The lower layer is the separated from the substrate by projecting a laser beam through the substrate from a lower surface thereof to impinge on the lower layer.