Abstract:
An AC/DC converter includes a first terminal and a second terminal to receive an AC voltage and a third terminal and a fourth terminal to deliver a DC voltage. A rectifying bridge is provided in the converter. A controllable switching or rectifying element has a control terminal configured to receive a control current. A first switch is coupled between a supply voltage and the control terminal to inject the control current. A second switch is coupled between the control terminal and a reference voltage to extract the control current. The first and second switches are selectively actuated by a control circuit.
Abstract:
A device for driving a power supply start-up circuit may include a logic unit for storing an operating state of equipment, where the logic unit is activatable by a start-up signal reaching a start-up threshold. The device may also include a detector, where the detector provides a signal to the logic unit indicating a drop in the signal below a drop threshold. The detector may enable the logic unit to continue operating in the presence of a failure of a power supply to store the operating state of the equipment upon occurrence of the failure of the power supply. In addition, the device may include a start-up circuit sensitive to a power supply signal, where the start-up circuit is activatable by the power supply signal as restored after the failure, and the start-up circuit may provide the start-up signal reaching the start-up threshold upon the power supply signal being restored.
Abstract:
A first input node receives a first input signal and a second input node receives a second input signal. The first and second input signals are in phase quadrature. An edge detector circuit senses the first input signal and produces a pulsed signal indicative of edges detected in the first input signal. A pulse skip and reset circuit senses the pulsed signal and the second input signal, and produces a reset signal indicative of pulses detected in the pulsed signal while the second input signal is de-asserted. A sampling circuit senses the second input signal and the reset signal, and produces an output signal that is deasserted in response to assertion of the second input signal and is asserted in response to a pulse being detected in the reset signal.
Abstract:
Radiofrequency energy that is captured by a radiofrequency power harvester is stored in a storage capacitance. One or more user circuits are supplied with energy stored in the storage capacitance. The harvester operates in alternated charge and burst phases with captured radiofrequency energy stored in the storage capacitance in the charge phases and supplied to the user circuits in the burst phases to perform user circuit tasks. In response to detection of completion of the user circuit tasks in a burst phase, the harvester causes operation to shift to the next charge phase.