Abstract:
The component incorporates, in topological terms, a scalable number of triac structures in a concentric annular arrangement. The component can be used with an electronic device to protect against electrostatic discharges. For example, the components can be used to protect the input/output pad, the first power supply terminal, and the second power supply terminal of an integrated circuit against electrostatic discharges.
Abstract:
A protection device includes a triac and triggering units. Each triggering unit is formed by a MOS transistor configured to operate at least temporarily in a hybrid operating mode and a field-effect diode. The field-effect diode has a controlled gate that is connected to the gate of the MOS transistor.
Abstract:
An integrated circuit may include at least one MOS transistor having a sigmoid response. The at least one MOS transistor may include a substrate, a source region, a drain region, a gate region, and insulating spacer regions on either side of the gate region. The substrate may include a first region situated under the gate region between the insulating spacer regions. At least one of the source and drain regions may be separated from the first region of the substrate by a second region of the substrate situated under an insulating spacer region, which may be of a same type of conductivity as the first region of the substrate.
Abstract:
A device for protecting a set of N nodes from electrostatic discharges, wherein N is greater than or equal to three, includes a set of N units respectively possessing N first terminals respectively connected to the N nodes and N second terminals connected together to form a common terminal. Each unit includes at least one MOS transistor including a parasitic transistor connected between a pair of the N nodes and configured, in the presence of a current pulse between the pair of nodes, to operate, at least temporarily, in a hybrid mode including MOS-type operation in a sub-threshold mode and operation of the bipolar transistor.
Abstract:
The component incorporates, in topological terms, a scalable number of triac structures in a concentric annular arrangement. The component can be used with an electronic device to protect against electrostatic discharges. For example, the components can be used to protect the input/output pad, the first power supply terminal, and the second power supply terminal of an integrated circuit against electrostatic discharges.
Abstract:
A protection device includes a triac and triggering units. Each triggering unit is formed by a MOS transistor configured to operate at least temporarily in a hybrid operating mode and a field-effect diode. The field-effect diode has a controlled gate that is connected to the gate of the MOS transistor.
Abstract:
An integrated circuit may include at least one MOS transistor having a sigmoid response. The at least one MOS transistor may include a substrate, a source region, a drain region, a gate region, and insulating spacer regions on either side of the gate region. The substrate may include a first region situated under the gate region between the insulating spacer regions. At least one of the source and drain regions may be separated from the first region of the substrate by a second region of the substrate situated under an insulating spacer region, which may be of a same type of conductivity as the first region of the substrate.
Abstract:
A device for protecting a set of N nodes from electrostatic discharges, wherein N is greater than or equal to three, includes a set of N units respectively possessing N first terminals respectively connected to the N nodes and N second terminals connected together to form a common terminal. Each unit includes at least one MOS transistor including a parasitic transistor connected between a pair of the N nodes and configured, in the presence of a current pulse between the pair of nodes, to operate, at least temporarily, in a hybrid mode including MOS-type operation in a sub-threshold mode and operation of the bipolar transistor.