Abstract:
An apparatus for detecting a position of a rotor of a DC motor with N phases having a plurality of windings. The apparatus includes circuitry to couple at least two of the windings between a supply voltage and a reference voltage according to a first current path and allow the current stored in the two windings to be discharged through a second current path. The circuitry is configured to force the at least two windings at a short circuit condition in the second current path. The apparatus also includes a measurement circuit configured to measure the time period of discharging the current stored in the two windings and a rotor position detector for detecting the rotor position based on the measured time period.
Abstract:
An apparatus for detecting a position of a rotor of a DC motor with N phases having a plurality of windings. The apparatus includes circuitry to couple at least two of the windings between a supply voltage and a reference voltage according to a first current path and allow the current stored in the two windings to be discharged through a second current path. The circuitry is configured to force the at least two windings at a short circuit condition in the second current path. The apparatus also includes a measurement circuit configured to measure the time period of discharging the current stored in the two windings and a rotor position detector for detecting the rotor position based on the measured time period.
Abstract:
An embodiment method includes rectifying a back electromotive force of a spindle motor in a hard disk drive and energizing a voice coil motor in the hard disk drive using the rectified back electromotive force of the spindle motor via a voice coil motor power stage to retract a head of the hard disk drive to a park position. The head is retracted by moving the head towards the park position during a first retract phase and retaining the head in the park position during a second retract phase by applying a bias voltage to the voice coil motor power stage during a bias interval of the second retract phase. The method also includes producing a saturation signal indicative of onset of saturation in the voice coil motor power stage and controlling the bias voltage during the second retract phase.
Abstract:
An ohmic-inductive electrical load, such as an electric motor, for example, for a hard-disk drive, is driven by supplying thereto a load current via a switching power stage supplied with a source current delivered by a supply source. The driving action may include sensing the load current; estimating the source current starting from the load current sensed; generating a feedback signal that assumes different values as a function of the result of the comparison between the source current estimated and a source-current threshold value; and driving the switching power stage via the feedback signal, increasing or decreasing, respectively, as a function of the different values assumed by the feedback signal, the load current, thereby controlling the source current.
Abstract:
A driver device coupled to a winding of an electro-mechanical actuator includes: a power stage driving the winding in a discontinuous mode by alternating conduction on-phases to off-phases, and a sensor circuit sensing a voltage across the winding in an off-phase, wherein, during such an off-phase the voltage across the winding includes a residual voltage which decays to zero. The power stage drives the winding from an on-phase to an off-phase by applying to the winding a reverse current pulse to invert the direction of flow of the current through the winding and produce an oscillation of the residual voltage, whereby the residual voltage includes a zero-crossing point after the current through the winding is exhausted. The sensor circuit senses the voltage across the winding at this zero-crossing point, whereby the voltage sensed across the winding at the zero-crossing point is indicative of the back electromotive force of the winding.
Abstract:
A method includes receiving an input digital signal and applying the input digital signal to digital filter processing with a corner frequency to produce a filtered output digital signal. The digital filter processing includes a set of multiplication operations using a set of filter multiplication coefficients. The set of multiplication operations is performed by alternately using a first set of approximate multiplication coefficients and a second set of approximate multiplication coefficients different from the first set of approximate multiplication coefficients. The approximate multiplication coefficients in the first set of approximate multiplication coefficients and the second set of approximate multiplication coefficients approximate multiplication coefficients in the set of filter multiplication coefficients as a function of negative power-of-two values. The alternating of multiplication operations results in digital filter processing with average corner frequency approximating the corner frequency.
Abstract:
An apparatus for detecting a position of a rotor of a DC motor with N phases having a plurality of windings. The apparatus includes circuitry to couple at least two of the windings between a supply voltage and a reference voltage according to a first current path and allow the current stored in the two windings to be discharged through a second current path. The circuitry is configured to force the at least two windings at a short circuit condition in the second current path. The apparatus also includes a measurement circuit configured to measure the time period of discharging the current stored in the two windings and a rotor position detector for detecting the rotor position based on the measured time period.
Abstract:
A control circuit controls the operation of a brushless DC (BLDC) sensorless motor having a first terminal connected to a first winding, a second terminal connected to a second winding and a third terminal connected to a third winding. A driver circuit applies drive signals to the first and second terminals and places the third terminal in a high-impedance state. The drive signals include first drive signals at a first current amplitude and second drive signals at a second, different, current amplitude. A differencing circuit senses a first mutual inductance voltage at the third terminal in response to the first drive signals and senses a second mutual inductance voltage at the third terminal in response to the second drive signals. The differencing circuit further determines a difference between the first and second mutual inductance voltages and produces a difference signal that is used for zero-crossing detection and rotor position sensing.
Abstract:
A method includes receiving an input digital signal and applying the input digital signal to digital filter processing with a corner frequency to produce a filtered output digital signal. The digital filter processing includes a set of multiplication operations using a set of filter multiplication coefficients. The set of multiplication operations is performed by alternately using a first set of approximate multiplication coefficients and a second set of approximate multiplication coefficients different from the first set of approximate multiplication coefficients. The approximate multiplication coefficients in the first set of approximate multiplication coefficients and the second set of approximate multiplication coefficients approximate multiplication coefficients in the set of filter multiplication coefficients as a function of negative power-of-two values. The alternating of multiplication operations results in digital filter processing with average corner frequency approximating the corner frequency.
Abstract:
A control circuit controls the operation of a brushless DC (BLDC) sensorless motor having a first terminal connected to a first winding, a second terminal connected to a second winding and a third terminal connected to a third winding. A driver circuit applies drive signals to the first and second terminals and places the third terminal in a high-impedance state. The drive signals include first drive signals at a first current amplitude and second drive signals at a second current amplitude different from the first current amplitude. A differencing circuit senses a first mutual inductance voltage at the third terminal in response to the first drive signals and senses a second mutual inductance voltage at the third terminal in response to the second drive signals. The differencing circuit further determines a difference between the first and second mutual inductance voltages and produces a difference signal that is used for zero-crossing detection and rotor position sensing.