Abstract:
An oscillator circuit includes first and second oscillators arranged in a series configuration between a supply voltage node and a reference voltage node. The first and second oscillators are configured to receive a synchronizing signal for controlling synchronization in frequency and phase. An electromagnetic network provided to couple the first and the second oscillators includes a transformer with a primary circuit and a secondary circuit. The primary circuit includes a first portion coupled to the first oscillator and second portion coupled to the second oscillator. The first and second portions are connected by a circuit element for reuse of current between the first and second oscillators. The oscillator circuit is fabricated as an integrated circuit device wherein the electromagnetic network is formed in metallization layers of the device. The secondary circuit generates an output power combining power provided from the first and second portions of the primary circuit.
Abstract:
An oscillator circuit includes first and second oscillators arranged in a series configuration between a supply voltage node and a reference voltage node. The first and second oscillators are configured to receive a synchronizing signal for controlling synchronization in frequency and phase. An electromagnetic network provided to couple the first and the second oscillators includes a transformer with a primary circuit and a secondary circuit. The primary circuit includes a first portion coupled to the first oscillator and second portion coupled to the second oscillator. The first and second portions are connected by a circuit element for reuse of current between the first and second oscillators. The oscillator circuit is fabricated as an integrated circuit device wherein the electromagnetic network is formed in metallization layers of the device. The secondary circuit generates an output power combining power provided from the first and second portions of the primary circuit.
Abstract:
A voltage reference circuit includes a first circuit block configured to generate a proportional to absolute temperature current, the first circuit block comprising a current mirror amplifier, a second circuit block coupled to the first circuit block and configured to generated a complimentary to absolute temperature current, and a third circuit block coupled to both the first circuit block and the second circuit block. The second circuit block includes a multi-stage common-source amplifier. The third circuit block is configured to combine the proportional to absolute temperature current and the complimentary to absolute temperature current to generate a reference voltage at an output of the voltage reference circuit.
Abstract:
An apparatus includes first and second oscillator circuits. A transformer has a primary winding coupling the first oscillator circuit to the second oscillator circuit and a secondary winding. A first outgoing communications circuit is coupled to the second oscillator circuit and drives an amplitude modulated data signal thereto. A first incoming communications circuit is coupled to the primary winding of the transformer. A second outgoing communications circuit is coupled to the secondary winding drives an amplitude modulated data signal thereto. A second incoming communications circuit is coupled to the secondary winding. The secondary winding is magnetically coupled with the primary winding so the secondary winding receives an output power and an incoming data transmission based upon the amplitude modulated data signal, and so the primary winding receives an incoming high speed data transmission based upon the amplitude modulated data signal.
Abstract:
A power supply circuit for an electrical appliance, including a turning-on stage configured for determining a transition from a turned-off state, in which the power supply circuit is off and does not supply electric power, to a turned-on state of the power supply circuit. The turning-on stage includes a transducer of the remote-control type configured for triggering the transition in response to the reception of a wireless signal. In some embodiments, operating power is transmitted from a remote controller to a control circuit of the electronic equipment, such that the electronic equipment can be turned on remotely but draws zero standby power.