Abstract:
Applicant has recognized and appreciated the desirability of powering an actuator using power drawn from one or both of an energy storage device and a spindle motor. In some embodiments, following a loss of external power to a hard disk drive, the hard disk drive (or one or more components thereof) determines whether to provide the actuator with power drawn from the spindle motor or to provide the actuator with power drawn from the spindle motor and from the energy storage device. In some embodiments, the hard disk drive (or the component(s) thereof) may additionally or alternatively determine whether to charge the energy storage device using power drawn from the spindle motor. In some embodiments, the drive may make the determinations based on an amount of power that the actuator is to consume at a time and an amount of power that the spindle motor can provide at the time.
Abstract:
An embodiment circuit comprises first and second output nodes with an inductor arranged therebetween, and first and second switches coupled to opposing ends of the inductor. The switches are switchable between non-conductive and conductive states to control current flow through the inductor and produce first and second output voltages. The current intensity through the inductor is compared with at least one reference value. Switching control circuitry is coupled with the first and second switches, the first and second output nodes, and current sensing circuitry, which is configured to control the switching frequency of the first and second switches as a function of the output voltages and a comparison at the current sensing circuitry. The switching control circuitry is configured to apply FLL-FFWD processing to produce the reference values as a function of a timing signal, targeting maintaining a constant target value for the converter switching frequency.
Abstract:
In accordance with an embodiment, a hard disk drive includes voice coil motors (VCMs) coupled to respective control units configured to drive retract an operation of the VCMs in the hard disk drive. The retract operation of the VCMs includes a sequence of retract steps. The control units are allotted respective time slots for communication over a communication line with the respective time slots synchronized via the common clock line, and are configured to drive sequences of retract steps of the VCMs in the hard disk drive in a timed relationship.
Abstract:
An embodiment circuit comprises first and second output nodes with an inductor arranged therebetween, and first and second switches coupled to opposed ends of the inductor. The switches are switchable between non-conductive and conductive states to control current flow through the inductor and produce first and second output voltages. The current intensity through the inductor is compared with at least one reference value. Switching control circuitry is coupled with the first and second switches, the first and second output nodes, and current sensing circuitry, which is configured to control the switching frequency of the first and second switches as a function of the output voltages and a comparison at the current sensing circuitry. The switching control circuitry is configured to apply FLL-FFWD processing to produce the reference values as a function of a timing signal, targeting maintaining a constant target value for the converter switching frequency.
Abstract:
A dual-input, single-output low-dropout voltage regulator circuit includes: a first supply terminal, a second supply terminal and an output terminal, and first and second transistors having current paths coupled respectively between the first and second terminal and the output terminal. First and second drive circuit blocks are coupled respectively to the first and second supply terminals and drive the control terminals of the first and second transistors to provide a regulated voltage at the output terminal from the voltage on the first supply terminal and the second supply terminal. An input circuit block is sensitive to the voltage at the output terminal and is coupled to the first and second drive circuit blocks and configured to activate the second transistor to provide regulated voltage at the output terminal from the second terminal as a result of the voltage at the output terminal becoming lower than a desired value.
Abstract:
A dual-input, single-output low-dropout voltage regulator circuit includes: a first supply terminal, a second supply terminal and an output terminal, and first and second transistors having current paths coupled respectively between the first and second terminal and the output terminal. First and second drive circuit blocks are coupled respectively to the first and second supply terminals and drive the control terminals of the first and second transistors to provide a regulated voltage at the output terminal from the voltage on the first supply terminal and the second supply terminal. An input circuit block is sensitive to the voltage at the output terminal and is coupled to the first and second drive circuit blocks and configured to activate the second transistor to provide regulated voltage at the output terminal from the second terminal as a result of the voltage at the output terminal becoming lower than a desired value.
Abstract:
In accordance with an embodiment, a hard disk drive includes voice coil motors (VCMs) coupled to respective control units configured to drive retract an operation of the VCMs in the hard disk drive. The retract operation of the VCMs includes a sequence of retract steps. The control units are allotted respective time slots for communication over a communication line with the respective time slots synchronized via the common clock line, and are configured to drive sequences of retract steps of the VCMs in the hard disk drive in a timed relationship.
Abstract:
An embodiment circuit comprises first and second output nodes with an inductor arranged therebetween, and first and second switches coupled to opposed ends of the inductor. The switches are switchable between non-conductive and conductive states to control current flow through the inductor and produce first and second output voltages. The current intensity through the inductor is compared with at least one reference value. Switching control circuitry is coupled with the first and second switches, the first and second output nodes, and current sensing circuitry, which is configured to control the switching frequency of the first and second switches as a function of the output voltages and a comparison at the current sensing circuitry. The switching control circuitry is configured to apply FLL-FFWD processing to produce the reference values as a function of a timing signal, targeting maintaining a constant target value for the converter switching frequency.