Abstract:
A transceiver includes a transmitter and a receiver coupled to each other through a first line and a second line. The transmitter transmits a first voltage signal of a second logic level or a fourth logic level, among a first logic level, the second logic level, a third logic level, and the fourth logic level, through the first line. The transmitter transmits a second voltage signal of the first logic level or the third logic level through the second line. The receiver generates an output signal having one of four values based on the first voltage signal and the second voltage signal.
Abstract:
A driving voltage generating device, a display device including the same, and a method of generating a driving voltage are provided. The driving voltage generating device includes a driving voltage setting unit receiving initially set data on a driving voltage and a feedback voltage and outputting a control signal, a driving voltage trimmer receiving finely adjusted data on the driving voltage and adjusting the feedback voltage, and a DC to DC converter generating the driving voltage based on the control signal and an input voltage.
Abstract:
Provided is a display device, including: a plurality of pixels; a scan driver connected to a plurality of scanning lines connected to the plurality of pixels; and a gate signal generator configured to determine a level of a gate-on voltage according to ambient temperature and to supply the gate-on voltage to the scan driver, wherein the gate signal generator is further configured to apply a hysteresis characteristic to a thermistor voltage to vary according to the ambient temperature.
Abstract:
A transceiver includes a transmitter and a receiver connected to each other by a first line and a second line. The transmitter transmits signals having a first voltage range to the first line and the second line in a first mode, and transmits signals having a second voltage range smaller than the first voltage range to the first line and the second line in a second mode. The transmitter encodes an original payload in the second mode to generate a first payload, and transmits the clock training pattern and the first payload through the first line and the second line.
Abstract:
A transceiver includes a transmitter and a receiver connected to each other through a first line and a second line. The transmitter transmits signals having a first voltage range to the first line and the second line in a first mode, and transmits signals having a second voltage range less than the first voltage range to the first line and the second line in a second mode. In transmitting a (1-1)-th payload to the receiver, the transmitter is sequentially driven in the first mode, the second mode, and the first mode, and transmits a first clock training pattern and the (1-1)-th payload in the second mode. The receiver includes a clock data recovery circuit generating a first clock signal corresponding to the received first clock training pattern and a register storing first frequency information and first phase information of the first clock training pattern.
Abstract:
A transceiver device includes a transmitter and a receiver connected through first and second lines. A first frame period includes an active period for transmitting a first payload and a vertical blank period including a frequency hopping period. The transmitter transmits, to the first and second lines, signals having a first voltage range in a first mode and signals having a second voltage range in a second mode. The transmitter generates a first horizontal synchronization signal in the second mode except for the frequency hopping period, encodes the first horizontal synchronization signal to horizontal synchronization data, and generates a second horizontal synchronization signal in the first mode in the frequency hopping period. The transmitter adds a first clock training pattern to the horizontal synchronization data except for the frequency hopping period, and adds a second clock training pattern to first horizontal synchronization data after the frequency hopping period.
Abstract:
A driving voltage generating device, a display device including the same, and a method of generating a driving voltage are provided. The driving voltage generating device includes a driving voltage setting unit receiving initially set data on a driving voltage and a feedback voltage and outputting a control signal, a driving voltage trimmer receiving finely adjusted data on the driving voltage and adjusting the feedback voltage, and a DC to DC converter generating the driving voltage based on the control signal and an input voltage.
Abstract:
A transceiver includes a transmitter and a receiver connected to each other through a first line and a second line. The transmitter transmits signals having a first voltage range to the first line and the second line in a first mode, and transmits signals having a second voltage range less than the first voltage range to the first line and the second line in a second mode. When transmitting a first payload to the receiver, the transmitter is sequentially driven in the first mode, the second mode, and the first mode, and the transmitter transmits a clock training pattern and the first payload in the second mode.
Abstract:
A transmitter includes a transmission controller which outputs original data through an original data lane, an encoder which encodes the original data into encoded data and outputs the encoded data through an encoded data lane, and a transmission driver which outputs the encoded data at a speed of M (M is a real number greater than 0) gigabits per second through a transmission and reception interface. The transmission driver provides a first clock signal corresponding to an output speed to the encoder, the encoder provides a second clock signal having a second frequency less than a first frequency of the first clock signal to the transmission controller, the transmission controller outputs the original data based on the second clock signal, and the encoder outputs the encoded data based on the first clock signal.
Abstract:
A data receiver, which communicates with a data transmitter through a plurality of lanes, includes: a first reception unit which receives first data through a first lane; a second reception unit which receives second data through a second lane; and a detector which compares the first data and the second data to detect a skew between the first lane and the second lane. The first reception unit includes a first clock data recovery unit which recovers a first clock and first payload data from the first data. The first reception unit controls a loop speed of the first clock data recovery unit based on a skew level of the skew.