Abstract:
A method of manufacturing a polarizing plate includes: preparing a polarizer including a dichroic material, the polarizer being configured to polarize incident light; forming a protective film on at least one surface of the polarizer; and forming at least one transmission region by selectively radiating a femtosecond laser onto the polarizer, a group transmittance of the at least one transmission region being 80% or more.
Abstract:
According to one embodiment of the present disclosure, an optical filter which makes light pass therethrough includes a first layer configured to polarize the light; a second layer disposed directly on a first surface of the first layer and to make only light with a first wavelength band pass therethrough; and a color conversion layer disposed on the first layer, to receive the light, and to convert the light with the first wavelength band into light with a second wavelength band.
Abstract:
A liquid crystal display includes a first substrate and a second substrate facing each other. A color filter is positioned on the first substrate. A liquid crystal layer is interposed between the first substrate and the second substrate. A first polarizer is positioned on an outer surface of the first substrate. A first compensation film is positioned on an outer surface of the first polarizer. A second compensation film is positioned on an outer surface of the second substrate. A third compensation film is positioned on an outer surface of the second compensation film. A second polarizer is positioned on an outer surface of the third compensation film. The second compensation film includes a negative C-plate, and the third compensation film includes a biaxial film.
Abstract:
A display device includes a plurality of pixels; a first substrate including a pixel electrode disposed in a pixel of the plurality of pixels, a second substrate facing the first substrate and including a color adjusting pattern, which is disposed in the pixel of the plurality of pixels, and a common electrode, which is disposed on the color adjusting patterns, and a liquid crystal layer interposed between the first substrate and the second substrate and including a liquid crystal and a dichroic dye, wherein the plurality of pixels include a first-color pixel, which is configured to display a first color, and a second-color pixel, which is configured to display a second color different from the first color, and the color adjusting pattern includes a first color adjusting pattern, which is disposed in the first-color pixel, and a second color adjusting pattern, which is disposed in the second-color pixel.
Abstract:
A display device includes a lens with an adjustable refractive index. The display device includes a display panel including a plurality of pixels, a backlight unit positioned at a back side of the display panel to emit light of a first color and light of a second color to the display panel at different times, the first color and the second color being different from each other; and a lens unit positioned at a front side of the display panel to form at least one lens in a 3D mode. The lens unit includes a plurality of electrodes for adjusting a refractive index of the lens, and a signal applied to the electrodes when the backlight unit emits the light of the first color is different from a signal applied to the electrodes when the backlight unit emits the light of the second color.
Abstract:
A method of manufacturing a polarizing plate includes: preparing a polarizer including a dichroic material, the polarizer being configured to polarize incident light; forming a protective film on at least one surface of the polarizer; and forming at least one transmission region by selectively radiating a femtosecond laser onto the polarizer, a group transmittance of the at least one transmission region being 80% or more.
Abstract:
An optical unit of embodiments of the present disclosure includes a phase difference layer including a UV absorbent, and a linear polarization layer on the phase difference layer. The phase difference layer may further includes a base film, a liquid crystal layer, and an overcoat layer on the liquid crystal layer. The resulting optical unit and the organic light emitting display including the same may have improved polarization characteristics and optical characteristics such as transmittance, and excellent external light anti-reflection characteristics and flexibility.
Abstract:
An optical unit of embodiments of the present disclosure includes a phase difference layer including a UV absorbent, and a linear polarization layer on the phase difference layer. The phase difference layer may further includes a base film, a liquid crystal layer, and an overcoat layer on the liquid crystal layer. The resulting optical unit and the organic light emitting display including the same may have improved polarization characteristics and optical characteristics such as transmittance, and excellent external light anti-reflection characteristics and flexibility.
Abstract:
A display device is provided. The display device includes a light source; an optical member including a light guide plate, which has a first side surface facing the light source, and a light transmission blocking pattern, which is disposed along an edge of an upper surface of the light guide plate to transmit ultraviolet light and block visible light; a display panel disposed on the optical member; and a light shielding resin disposed between the optical member and the display panel and configured to overlap the light transmission blocking pattern and couple the optical member with the display panel.
Abstract:
A display device includes a lens with an adjustable refractive index. The display device includes a display panel including a plurality of pixels, a backlight unit positioned at a back side of the display panel to emit light of a first color and light of a second color to the display panel at different times, the first color and the second color being different from each other; and a lens unit positioned at a front side of the display panel to form at least one lens in a 3D mode. The lens unit includes a plurality of electrodes for adjusting a refractive index of the lens, and a signal applied to the electrodes when the backlight unit emits the light of the first color is different from a signal applied to the electrodes when the backlight unit emits the light of the second color.