ALUMINUM METASURFACES FOR HIGHLY SENSITIVE AND ENHANCED DETECTION OF ANALYTES FOR SMARTPHONE DIAGNOSTICS AND METHODS FOR MAKING AND USING THE SAME

    公开(公告)号:US20210223241A1

    公开(公告)日:2021-07-22

    申请号:US17000268

    申请日:2020-08-21

    Abstract: A metasurface device includes a dielectric layer, an aluminum nanodisk and an aluminum layer. The dielectric layer includes top and bottom surfaces that are opposite each other. The dielectric layer also includes at least one ring-like cavity that extends between the top and bottom surfaces of the dielectric layer. The aluminum nanodisk is formed in the at least one ring-like cavity in the dielectric layer. The aluminum layer is formed on the dielectric layer and includes at least one ring-like cavity that extends between top and bottom surfaces of the aluminum layer. Each ring-like cavity in the aluminum layer corresponds to a ring-like cavity in the dielectric layer. Two or more analytes may emit fluorescence in response to light of a predetermined wavelength being incident on the metasurface device and in which the two or more analytes are present at the dielectric layer.

    NANOPHOTONIC SENSOR IMPLANTS WITH 3D HYBRID PERIODIC-AMORPHOUS PHOTONIC CRYSTALS FOR WIDE-ANGLE MONITORING OF LONG-TERM IN-VIVO INTRAOCULAR PRESSURE FIELD

    公开(公告)号:US20220054085A1

    公开(公告)日:2022-02-24

    申请号:US17393391

    申请日:2021-08-03

    Abstract: A biosensor includes a periodic crystalline structure first layer, and an amorphous crystalline structure second layer. The first and second layers are formed from a biocompatible silicone having a Young's Modulus E between 0.4 and 2.0 MPa. The biosensor has a pressure dependent NIR resonance peak shift of less than 15 nm over a field of view of 40°, and has an optical pressure sensitivity of between 0.38 and 2.6 nm/mm Hg. The biosensor may be formed by forming a 3D crystalline structure having a periodic amorphous crystalline first layer and an amorphous crystalline second layer. Voids of the 3D crystalline structure are filled with the biocompatible silicone/polydimethylsiloxane a material. The 3D crystalline structure is removed to form an inverse structure having a first volume of an amorphous arrangement of voids and a second volume of a periodic arrangement of voids.

    IMAGE SENSOR AND METHOD OF OPERATING
    4.
    发明公开

    公开(公告)号:US20240175750A1

    公开(公告)日:2024-05-30

    申请号:US18434658

    申请日:2024-02-06

    CPC classification number: G01J3/2823 G01J3/0208 G01J3/0229 G01J3/18 G01J3/4412

    Abstract: Optical spectrometers may be used to determine the spectral components of electromagnetic waves. Spectrometers may be large, bulky devices and may require waves to enter at a nearly direct angle of incidence in order to record a measurement. What is disclosed is an ultra-compact spectrometer with nanophotonic components as light dispersion technology. Nanophotonic components may contain metasurfaces and Bragg filters. Each metasurface may contain light scattering nanostructures that may be randomized to create a large input angle, and the Bragg filter may result in the light dispersion independent of the input angle. The spectrometer may be capable of handling about 200 nm bandwidth. The ultra-compact spectrometer may be able to read image data in the visible (400-600 nm) and to read spectral data in the near-infrared (700-900 nm) wavelength range. The surface area of the spectrometer may be about 1 mm2, allowing it to fit on mobile devices.

    IMAGE SENSOR AND METHOD OF OPERATING

    公开(公告)号:US20230099112A1

    公开(公告)日:2023-03-30

    申请号:US17989605

    申请日:2022-11-17

    Abstract: Optical spectrometers may be used to determine the spectral components of electromagnetic waves. Spectrometers may be large, bulky devices and may require waves to enter at a nearly direct angle of incidence in order to record a measurement. What is disclosed is an ultra-compact spectrometer with nanophotonic components as light dispersion technology. Nanophotonic components may contain metasurfaces and Bragg filters. Each metasurface may contain light scattering nanostructures that may be randomized to create a large input angle, and the Bragg filter may result in the light dispersion independent of the input angle. The spectrometer may be capable of handling about 200 nm bandwidth. The ultra-compact spectrometer may be able to read image data in the visible (400-600 nm) and to read spectral data in the near-infrared (700-900 nm) wavelength range. The surface area of the spectrometer may be about 1 mm2, allowing it to fit on mobile devices.

    OBJECT RECOGNITION APPARATUS AND OPERATION METHOD THEREOF

    公开(公告)号:US20220397391A1

    公开(公告)日:2022-12-15

    申请号:US17887924

    申请日:2022-08-15

    Abstract: An object recognition apparatus includes a first spectrometer configured to obtain a first type of spectrum data from light scattered, emitted, or reflected from an object; a second spectrometer configured to obtain a second type of spectrum data from the light scattered, emitted, or reflected from the object, the second type of spectrum data being different from the first type of spectrum data; an image sensor configured to obtain image data of the object; and a processor configured to identify the object using data obtained from at least two from among the first spectrometer, the second spectrometer, and the image sensor and using at least two pattern recognition algorithms.

    OBJECT RECOGNITION APPARATUS AND OPERATION METHOD THEREOF

    公开(公告)号:US20210223031A1

    公开(公告)日:2021-07-22

    申请号:US16952959

    申请日:2020-11-19

    Abstract: An object recognition apparatus includes a first spectrometer configured to obtain a first type of spectrum data from light scattered, emitted, or reflected from an object; a second spectrometer configured to obtain a second type of spectrum data from the light scattered, emitted, or reflected from the object, the second type of spectrum data being different from the first type of spectrum data; an image sensor configured to obtain image data of the object; and a processor configured to identify the object using data obtained from at least two from among the first spectrometer, the second spectrometer, and the image sensor and using at least two pattern recognition algorithms.

    IMAGE SENSOR AND METHOD OF OPERATING

    公开(公告)号:US20210223104A1

    公开(公告)日:2021-07-22

    申请号:US16914256

    申请日:2020-06-26

    Abstract: Optical spectrometers may be used to determine the spectral components of electromagnetic waves. Spectrometers may be large, bulky devices and may require waves to enter at a nearly direct angle of incidence in order to record a measurement. What is disclosed is an ultra-compact spectrometer with nanophotonic components as light dispersion technology. Nanophotonic components may contain metasurfaces and Bragg filters. Each metasurface may contain light scattering nanostructures that may be randomized to create a large input angle, and the Bragg filter may result in the light dispersion independent of the input angle. The spectrometer may be capable of handling about 200 nm bandwidth. The ultra-compact spectrometer may be able to read image data in the visible (400-600 nm) and to read spectral data in the near-infrared (700-900 nm) wavelength range. The surface area of the spectrometer may be about 1 mm2, allowing it to fit on mobile devices.

Patent Agency Ranking