Abstract:
Disclosed are a method and a system for processing a computer-generated hologram (CGH). The system for processing a CGH includes a CGH generation apparatus and a display apparatus. The CGH generation apparatus repeatedly performs a process of propagating object data from a first depth layer to a second depth layer, changing amplitude data of the object data to second predefined amplitude data, back-propagating the object data from the second depth layer to the first depth layer, and changing the amplitude data of the object data to first predefined amplitude data, and generates a CGH by using the object data.
Abstract:
An augmented reality device may include: a light source; a display device comprising a plurality of pixels and configured to generate a first image based on light incident from the light source; and an optical combiner comprising a plurality of optical combining units each including a first area and a second area, wherein the first area reflects a plurality of beams constituting the first image at different reflection angles according to wavelengths and incident angles and transfers the reflected plurality of beams to a predetermined viewer position, and the second area transmits a beam of a second image received from outside and transfers the beam of the second image to the predetermined viewer position.
Abstract:
Provided are projectors, each including a light source configured to emit laser light, a substrate spaced apart from the light source by a distance, a pattern mask including a pattern on a first surface of the substrate, the first surface facing the light source, and a meta-lens including a plurality of first nanostructures on a second surface of the substrate, the second surface facing the first surface, the nanostructures having a shape dimension of a sub-wavelength that is less than a wavelength of light emitted from the light source.
Abstract:
An imaging apparatus and an image sensor including the same are provided. The imaging apparatus includes first, second, and third optical devices. At least one of the first, second, and third optical devices is a thin-lens including nanostructures.
Abstract:
A three-dimensional (3D) image sensor module including: an oscillator configured to output a distortion-compensated oscillation frequency as a driving voltage of a sine wave biased with a bias voltage; an optical shutter configured to vary transmittance of reflective light reflected from a subject, according to the driving voltage, and to modulate the reflective light into at least two optical modulation signals having different phases; and an image generator configured to generate image data about the subject, the image data including depth information that is calculated based on a difference between the phases of the at least two optical modulation signals
Abstract:
Provided is an apparatus and method of recognizing a movement of a subject. The apparatus includes a light source configured to emit light to the subject and an image sensor configured to receive light reflected from the subject. The apparatus includes a processor configured to detect a pixel that is receiving the reflected light, the pixel being included in a pixel array of the image sensor. The processor is configured to track the movement of the subject based on a change in a position of the detected pixel.
Abstract:
An infrared sensor includes a substrate, a reflective layer on an upper surface of the substrate, and a composite layer including an absorption layer including a nanostructure and configured to absorb light energy and a sensing layer including a plurality of temperature sensing cells, where the composite layer is above the upper surface of the substrate, and where the infrared ray sensor further includes a resonant cavity between the composite layer and the reflective layer.
Abstract:
A thermal imaging pixel, including a variable resistor array; and a pixel readout circuit configured to read electrical signals corresponding to a composite resistance of the variable resistor array, wherein the variable resistor array includes a plurality of variable resistor subarrays electrically connected in series, wherein each variable resistor subarray of the plurality of variable resistor subarrays includes a plurality of variable resistor cells electrically connected in parallel, and wherein each variable resistor cell of the plurality of variable resistor cells has a resistance which changes according to temperature.
Abstract:
A structured light projector includes a light source configured to emit light, a structured light pattern mask configured to receive the light emitted by the light source and including a first region configured to generate a first structured light having a first polarization and a second region configured to generate a second structured light having a second polarization that is different from the first polarization, and a polarization multiplexing deflector configured to deflect the first structured light and the second structured light generated by the structured light pattern mask, to different directions, respectively.
Abstract:
A structured light projectors includes an illuminator configured to emit illumination light, a pattern mask configured to project structured light by partially transmitting the illumination light, and a lens configured to project the structured light, wherein the pattern mask includes a first lens distortion compensation region including a plurality of opaque first light shielding patterns having a first pattern width, respectively, and a second lens distortion compensation region surrounding the first lens distortion compensation region, the second lens distortion compensation region including a plurality of opaque second light shielding patterns having a second pattern width, respectively, wherein the second pattern width is less than the first pattern width.