Abstract:
An electronic device for detecting a position of an object is disclosed, The electronic device includes an optical source configured to emit light to a detection area, a light concentrator configured to concentrate light reflected by a target object located in a detection area, a light receiver configured to receive through photodiodes the reflected light concentrated by the light concentrator and to output a light quantity pattern of the reflected light, and a processor configured to determine the position of the target object based on the light quantity pattern of the reflected light.
Abstract:
An image sensor having a pixel architecture for capturing a depth image and a color image. The image sensor may be configured in a pixel architecture in which a floating diffusion (FD) node is shared, and may operate in different pixel architectures in a depth mode and a color mode, respectively.
Abstract:
A mobile device method for certifying a mobile device includes: generating first fixed pattern noise (FPN) information based on column FPN of an image sensor included in the mobile device; and controlling the mobile device to perform a certification by using the first FPN information.
Abstract:
A background light suppression apparatus and method capable of suppressing influences of background light in a depth sensor includes measuring output signals of sub pixels for a sub integration time shorter than a frame integration time; and integrating differences between the output signals after the sub integration time.
Abstract:
A depth sensing apparatus and method for acquiring a depth image of a target object may calculate a difference voltage between a first floating diffusion node and a second floating diffusion node, based on a voltage of a photodiode stored in the first floating diffusion node in a first phase interval and a voltage of the photodiode stored in the second floating diffusion node in a second phase interval, using a sub-integration period, may feed back the difference voltage to one of the first floating diffusion node and the second floating diffusion node, and may calculate a depth value of a pixel based on difference voltages accumulated during an integration period including sub-integration periods.
Abstract:
A depth sensing apparatus and method for acquiring a depth image of a target object may calculate a difference voltage between a first floating diffusion node and a second floating diffusion node, based on a voltage of a photodiode stored in the first floating diffusion node in a first phase interval and a voltage of the photodiode stored in the second floating diffusion node in a second phase interval, using a sub-integration period, may feed back the difference voltage to one of the first floating diffusion node and the second floating diffusion node, and may calculate a depth value of a pixel based on difference voltages accumulated during an integration period including sub-integration periods.