Abstract:
The present invention relates to a device for transmitting data and, particularly, to a device for transmitting data by using a magnetic stripe method. According to one embodiment of the present invention, the magnetic stripe data transmission device comprises: a coil to which a current is supplied in a first direction and a second direction, which is opposite to the first direction; a core for inducing a magnetic field when the current is supplied to the coil; a power source for supplying the current to the coil; driving units for intermittently supplying, to the coil, in the first direction or the second direction, a burst pulse or pseudo-burst pulse current supplied from the power source; and a control unit for outputting, to the driving units, a control signal in order to perform control such that the current is supplied to the coil alternately in the first direction and the second direction, wherein the core can be made of a material having an aspect ratio value of at least 0.5, having a coercivity value of 1000-10,000 [A/m], and having pseudo-hard magnetic density of which the saturated magnetic flux density value is at least 1 [T].
Abstract:
A planar spiral induction coil includes a strip-shaped coil having at least one turn. The at least one turn has a width that changes as a distance from a beginning of the strip-shaped coil increases in a length direction of the strip-shaped coil. Each turn of the at least one turn has a respective width that causes an equal current to flow through each turn of the at least one turn.
Abstract:
A wireless charging system and method are provided, that are capable of simultaneously charging multiple mobile devices, providing high power transfer efficiency for multiple mobile devices located at any position and orientation, and minimizing electromagnetic radiation from a transmitting (TX) coil and a receiving (RX) coil. The method and structure reduce electromagnetic interference (EMI) radiation by shunting in-phase currents flowing in a wireless power transmitting unit (TX unit) and a wireless power receiving unit (RX unit) of a wireless charging system.
Abstract:
A magnetic stripe transmission (MST) apparatus that improves a recognition rate and operates at a low current is provided. The apparatus includes a first coil disposed between a first power supply source and a second power supply source, and wound in a first direction, a second coil connected in parallel to the first coil, disposed between the first power supply source and the second power supply source, and wound in a second direction, a first driver disposed between the first coil and the second power supply source, and configured to control a first current of the first coil according to a first voltage pulse supplied by a first pulse supply source, and a second driver disposed between the second coil and the second power supply source, and configured to control a second current of the second coil according to a second voltage pulse supplied by a second pulse supply source.
Abstract:
An apparatus configured to transceive wireless power, includes a magnetostrictive resonator configured to be excited by a magnetic field, and a soft magnetic material disposed in a vicinity of the magnetostrictive resonator. The apparatus further includes a transducing coil disposed in a vicinity of the magnetostrictive resonator or the soft magnetic material, and configured to convert mechanical energy generated by the excitation of the magnetostrictive resonator to electric energy.
Abstract:
A planar spiral induction coil includes a strip-shaped coil having at least one turn. The at least one turn has a width that changes as a distance from a beginning of the strip-shaped increases in a length direction of the strip-shaped coil. each turn of the at least one turn has a respective width that causes an equal current to flow through each turn of the at least one turn.