Abstract:
A display device includes a signal receiver configured to receive an image signal; a display including a plurality of modules each including a plurality of light sources, and display an image based on the received image signal; and a controller configured to perform first uniformity calibration between light sources within each individual module with regard to the modules, and second uniformity calibration between the modules, wherein the controller controls the first uniformity calibration to be applied to the image signal received in the signal receiver based on a first coefficient determined for each of the light sources within each individual module, controls the second uniformity calibration to be applied to the image signal subjected to the first uniformity calibration based on a second coefficient determined for each of the modules, and controls a calibrated image to be displayed based on the image signal subjected to the second uniformity calibration.
Abstract:
A display apparatus is provided. The display apparatus includes an image receiver for receiving an image signal; a data processor for generating an image frame by processing the image signal; a display unit for displaying the generated image frame; a User Interface (UI) generator for generating and displaying a UI to select a correction region in the displayed image frame; and a controller for controlling the data processor to generate an image frame with a corrected display attribute, using a preset correction value with respect to the selected correction region.
Abstract:
A display device includes a signal receiver configured to receive an image signal; a display including a plurality of modules each including a plurality of light sources, and display an image based on the received image signal; and a controller configured to perform first uniformity calibration between light sources within each individual module with regard to the modules, and second uniformity calibration between the modules, wherein the controller controls the first uniformity calibration to be applied to the image signal received in the signal receiver based on a first coefficient determined for each of the light sources within each individual module, controls the second uniformity calibration to be applied to the image signal subjected to the first uniformity calibration based on a second coefficient determined for each of the modules, and controls a calibrated image to be displayed based on the image signal subjected to the second uniformity calibration.
Abstract:
A display apparatus includes a signal receiver configured to receive an image signal having a plurality of gradations; a display configured to display an image based on the received image signal; a storage configured to store a plurality of calibration coefficients corresponding to more than two gradations from among the plurality of gradations to calibrate a uniformity of the image; and a controller configured to control the display to apply to the received image signal, a calibration coefficient corresponding to a gradation of the received image signal from among the plurality of gradations to display the image. With this, the uniformity of the image outputted from the display apparatus is exactly calibrated with respect to the plurality of gradations.
Abstract:
A pairing apparatus and method are provided. The pairing apparatus includes: a first communicator configured to broadcast a search signal over a first communication method, and to receive, from the external communication apparatus, a first response signal in response to the search signal; a second communicator configured to receive a second response signal via a second communication method having a shorter transmission range than the first communication method; and a controller configured to, in response to the first communicator receiving the first response signal and the second communicator receiving the second response signal, control to perform a pairing with the external communication apparatus, wherein the second communicator is periodically activated while the pairing apparatus is turned on, and an activation period of the second communicator is set adaptively according to a transmission period of the second response signal.
Abstract:
A display device includes a signal receiver configured to receive an image signal; a display including a plurality of modules each including a plurality of light sources, and display an image based on the received image signal; and a controller configured to perform first uniformity calibration between light sources within each individual module with regard to the modules, and second uniformity calibration between the modules, wherein the controller controls the first uniformity calibration to be applied to the image signal received in the signal receiver based on a first coefficient determined for each of the light sources within each individual module, controls the second uniformity calibration to be applied to the image signal subjected to the first uniformity calibration based on a second coefficient determined for each of the modules, and controls a calibrated image to be displayed based on the image signal subjected to the second uniformity calibration.
Abstract:
A display device is provided, which includes a display, a ditherer configured to perform dithering of video data displayed on the display, an illumination sensor configured to sense illumination around the display device, and a processor configured to control driving of the ditherer on the basis of a grayscale level of the video data if or when the sensed illumination is lower than a predetermined value.
Abstract:
A color calibration apparatus includes an image obtaining unit configured to obtain first and second photographed images which are generated by photographing first and second mono-color test images displayed on the display device; a controller configured to detect an ambient light area on which an ambient light is shining within the first photographed image based on pixel values of the first photographed image, and further configured to determine a remaining area of the first photographed image other than the ambient light area as a representative value calculating area; and an image processor configured to calculate a representative value based on pixel values of an area corresponding to the representative value calculating area within the second photographed image, and further configured to perform color calibration of the display device based on the representative value.
Abstract:
Provided are a light-emitting diode (LED) display device and a method of operating the LED display device determining whether a line flicker will occur based on a level of an input image signal, obtaining an LED line scan order corresponding to the level of the input image signal and brightness according to the input image signal based on the determining, and driving at least one LED line based on the LED line scan order. An LED line scan order may be adjusted according to a level of an input/output image signal in an LED display device so as to reduce occurrence of a line flicker phenomenon in all levels of the input/output image signal.
Abstract:
Provided are a light-emitting diode (LED) display device and a method of operating the LED display device determining whether a line flicker will occur based on a level of an input image signal, obtaining an LED line scan order corresponding to the level of the input image signal and brightness according to the input image signal based on the determining, and driving at least one LED line based on the LED line scan order. An LED line scan order may be adjusted according to a level of an input/output image signal in an LED display device so as to reduce occurrence of a line flicker phenomenon in all levels of the input/output image signal.