Abstract:
A method for measuring at least one property of a sample includes obtaining a sample of fluid including at least fines from a downhole environment, exposing the sample to a magnetic field, measuring a magnetic susceptibility of the fines in the sample in response to the magnetic field, and identifying at least one mineral present in the fines based at least partially on the magnetic susceptibility.
Abstract:
Tools and methods are used to determine the oil, water, and solids volume fractions in a drilling fluid at the rig site. The volume fractions can be determined in-line with returned drilling fluid by using an NMR magnet and a flow line or sample chamber that receives a fluid sample and loads it into the NMR magnet. Using an RF probe, spectrometer, and computing device, data processing and interpretation of NMR data from the spectrometer is performed, while also raising a flag when iron contamination exceeds a predefined threshold.
Abstract:
Methods for improved interpretation of NMR data acquired from industrial samples by simultaneously detecting more than one resonant nucleus without removing the sample from the sensitive volume of the NMR magnet or radio frequency probe are disclosed. In other aspects, the present disclosure provides methods for robust imaging/analysis of spatial distribution of different fluids (e.g., 1H, 23Na, 19F) within a core or reservoir rock. NMR data may be interpreted in real-time during dynamic processes to enable rapid screening, e.g. of enhanced oil recovery techniques and products and/or to provide improved interpretation of well-logs. Measurements of resonant nuclei other than 1H may be performed in the laboratory or downhole with a NMR logging tool. In other aspects, the present disclosure describes a novel kernel function to extract values for underlying parameters that define relaxation time behavior of a quadrupolar nucleus.
Abstract:
A porous material with liquid in the pores is examined by submerging the material in a bathing liquid, possibly a perfluorocarbon, which is immiscible with the liquid in the pores, is non-wetting towards the material, is immiscible with and differs in density from any liquid on the outside of the material, and does not contain a resonant element found in the bathing liquid. This bathing liquid displaces fluid from the surface of the porous material but not the liquid in the pores. Nuclear magnetic resonance signals from liquid in the pores give a measurement of pore volume. Volume of bathing liquid displaced by the porous material gives the bulk volume and porosity can be derived from these measurements. Sample preparation is minimal and a benchtop spectrometer can be used, making the method practical for examination of drill cuttings from a borehole while drilling.
Abstract:
A laboratory NMR methodology (and corresponding laboratory apparatus) defines a sample volume. The method stores downhole tool data corresponding to a hydrocarbon-bearing sample collected from a given subsurface formation. The downhole tool data includes parameters pertaining to magnetic fields used by a downhole tool during a suite of NMR measurements of the given subsurface formation. The sample is positioned in the sample volume of the laboratory apparatus, which applies a static magnetic field in the sample volume. Furthermore, the laboratory apparatus applies a suite of NMR measurements to the sample volume to thereby determine a property of the sample. The NMR measurements of the suite each include a pulse sequence of oscillating magnetic field in conjunction with a pulsed-mode gradient field. The pulsed-mode gradient field is based on the stored downhole tool data corresponding to the sample. A laboratory NMR methodology for optimizing downhole NMR measurements is also described.
Abstract:
Tools and methods are used to determine the oil, water, and solids volume fractions in a drilling fluid at the rig site. The volume fractions can be determined in-line with returned drilling fluid by using an NMR magnet and a flow line or sample chamber that receives a fluid sample and loads it into the NMR magnet. Using an RF probe, spectrometer, and computing device, data processing and interpretation of NMR data from the spectrometer is performed, while also raising a flag when iron contamination exceeds a predefined threshold.
Abstract:
A method of analyzing properties of a porous sample, typically a cylinder of porous rock, comprises centrifuging the sample while it contains at least one liquid, determining the distribution of at least one liquid in the sample by magnetic resonance imaging of the sample, and also determining the distribution of at least one magnetic resonance parameter, where the parameter is one of longitudinal relaxation time T1, transverse relaxation time T2 and diffusion coefficient D. Pore throat sizes can be determined from the distribution of at least one liquid in the sample and pore body sizes can be determined from the distribution of the magnetic resonance parameter enabling determination of a relationship between pore throat sizes and pore body sizes in the sample. This can be a relationship between individual values of pore throat size and an average of body sizes of pores having that individual pore throat size.
Abstract:
A laboratory NMR methodology (and corresponding laboratory apparatus) defines a sample volume. The method stores downhole tool data corresponding to a hydrocarbon-bearing sample collected from a given subsurface formation. The downhole tool data includes parameters pertaining to magnetic fields used by a downhole tool during a suite of NMR measurements of the given subsurface formation. The sample is positioned in the sample volume of the laboratory apparatus, which applies a static magnetic field in the sample volume. Furthermore, the laboratory apparatus applies a suite of NMR measurements to the sample volume to thereby determine a property of the sample. The NMR measurements of the suite each include a pulse sequence of oscillating magnetic field in conjunction with a pulsed-mode gradient field. The pulsed-mode gradient field is based on the stored downhole tool data corresponding to the sample. A laboratory NMR methodology for optimizing downhole NMR measurements is also described.
Abstract:
A method for measuring at least one property of a sample includes obtaining a sample of fluid including at least fines from a downhole environment, exposing the sample to a magnetic field, measuring a magnetic susceptibility of the fines in the sample in response to the magnetic field, and identifying at least one mineral present in the fines based at least partially on the magnetic susceptibility.
Abstract:
Methods for improved interpretation of NMR data acquired from industrial samples by simultaneously detecting more than one resonant nucleus without removing the sample from the sensitive volume of the NMR magnet or radio frequency probe are disclosed. In other aspects, the present disclosure provides methods for robust imaging/analysis of spatial distribution of different fluids (e.g., 1H, 23Na, 19F) within a core or reservoir rock. NMR data may be interpreted in real-time during dynamic processes to enable rapid screening, e.g. of enhanced oil recovery techniques and products and/or to provide improved interpretation of well-logs. Measurements of resonant nuclei other than 1H may be performed in the laboratory or downhole with a NMR logging tool. In other aspects, the present disclosure describes a novel kernel function to extract values for underlying parameters that define relaxation time behavior of a quadrupolar nucleus.