Abstract:
A data reader may consist of at least a magnetoresistive stack positioned on an air bearing surface. A portion of the magnetoresistive stack may be set to a first fixed magnetization by a pinning structure separated from the air bearing surface by a front shield that is set to a second fixed magnetization by a biasing structure. The front shield may be separated from the biasing structure by a coupling structure.
Abstract:
A data storage device may be configured at least with a magnetic stack that contacts a magnetic shield. The magnetic stack can be disposed between first and second side shields and having at least one layer constructed of a CoFeNiB material. The magnetic shield may have a synthetic antiferromagnet with a non-magnetic layer disposed between first and second ferromagnetic layers.
Abstract:
A data reader may consist of at least a magnetoresistive stack positioned on an air bearing surface. A portion of the magnetoresistive stack may be set to a first fixed magnetization by a pinning structure separated from the air bearing surface by a front shield that is set to a second fixed magnetization by a biasing structure. The front shield may be separated from the biasing structure by a coupling structure.
Abstract:
A data reader may have a magnetoresistive stack consisting of at least magnetically free and magnetically fixed structures with the magnetically fixed structure set to a first magnetization direction by a pinning structure separated from an air bearing surface by a front shield portion of a magnetic shield. The pinning structure can meet the front shield portion with a planar sidewall angled at 10° or less with respect to the ABS.
Abstract:
A data reader may consist of at least a magnetoresistive stack positioned on an air bearing surface. A portion of the magnetoresistive stack may be set to a first fixed magnetization by a pinning structure separated from the air bearing surface by a front shield that is set to a second fixed magnetization by a biasing structure. The front shield may be separated from the biasing structure by a coupling structure.
Abstract:
A magnetic sensor may generally be configured as a data reader capable of sensing data bits from an adjacent data storage medium. Various embodiments of a magnetic element may have at least a magnetic stack that contacts at least a first shield. The first shield can have at least one synthetic antiferromagnetic structure (SAFS) that is pinned by a high-coercivity ferromagnetic (HCFM) layer.
Abstract:
A magnetic sensor may generally be configured as a data reader capable of sensing data bits from an adjacent data storage medium. Various embodiments of a magnetic element may have at least a magnetic stack that contacts at least a first shield. The first shield can have at least one synthetic antiferromagnetic structure (SAFS) that is pinned by a high-coercivity ferromagnetic (HCFM) layer.
Abstract:
A data reader can be configured with at least a magnetoresistive stack contacting one or more magnetic shields. The magnetoresistive stack can be separated from a magnetic shield by a seed lamination on an air bearing surface with the seed lamination consisting of at least three sub-layers that are constructed with different material compositions.
Abstract:
A data reader may consist of at least a magnetoresistive stack positioned on an air bearing surface. A portion of the magnetoresistive stack may be set to a first fixed magnetization by a pinning structure separated from the air bearing surface by a front shield that is set to a second fixed magnetization by a biasing structure. The front shield may be separated from the biasing structure by a coupling structure.
Abstract:
A data storage device may be configured at least with a magnetic stack that contacts a magnetic shield. The magnetic stack can be disposed between first and second side shields and having at least one layer constructed of a CoFeNiB material. The magnetic shield may have a synthetic antiferromagnet with a non-magnetic layer disposed between first and second ferromagnetic layers.