Abstract:
A hard disk drive includes a magnetic writer and a magnetic recording medium, which includes data tracks with user data sections positioned between servo wedges. The servo wedges each can include multiple servo sectors. The hard disk drive also includes circuitry programmed to cause the magnetic writer to write user data to the multiple servo sectors in multiple servo wedges.
Abstract:
A transducing head may be connected to a controller and positioned proximal a data storage medium. The controller can be connected to a wear level identification circuit and configured to identify a first data region of the data storage medium having a first wear level and a second data region of the data storage medium having a second wear level. The first and second wear levels can respectively correspond to different amounts of component degradation of the data storage device.
Abstract:
Implementations described and claimed herein includes a storage device comprising a plurality of readers, including a first subset of readers configured to read a first subset of tracks and a second subset of readers configured to read a second subset of tracks, the first subset of tracks being wider than the second subset of tracks. In another implementation, the readers in the first subset of readers are wider than the readers in the second subset of readers. The wider readers may be configured to recover servo information and the narrow readers may be configured to recover data information. The storage devices may include two-dimensional magnetic recording, conventional perpendicular magnetic recording, shingled magnetic recording, multi-sensor magnetic recording, and interlaced magnetic recording.
Abstract:
A disc drive system provides increased reliability by detecting and correcting errors associated with bit-patterned media. Write synchronization errors associated with bit-patterned media are addressed by including data storage for temporarily storing data that is being written to the disc drive. The data is read from both the disc drive and the storage medium and compared to detect write synchronization errors. A disc drive system for correcting write synchronization errors includes an encoder, non-volatile storage, and decoder device for implementing a parity-based scheme for increased reliability. Data strings being written to the disc drive are combined in an encoder to generate a parity string. The address of the data being written to the disc drive, along with the updated parity string is stored to the non-volatile storage. The data strings are read from the disc drive by the decoder. If uncorrectable errors are identified, the decoder employs the parity string in conjunction with the other data strings written to the disc drive to reconstruct the data string with uncorrectable errors.
Abstract:
A disc drive system provides increased reliability by detecting and correcting errors associated with bit-patterned media. Write synchronization errors associated with bit-patterned media are addressed by including data storage for temporarily storing data that is being written to the disc drive. The data is read from both the disc drive and the storage medium and compared to detect write synchronization errors. A disc drive system for correcting write synchronization errors includes an encoder, non-volatile storage, and decoder device for implementing a parity-based scheme for increased reliability. Data strings being written to the disc drive are combined in an encoder to generate a parity string. The address of the data being written to the disc drive, along with the updated parity string is stored to the non-volatile storage. The data strings are read from the disc drive by the decoder. If uncorrectable errors are identified, the decoder employs the parity string in conjunction with the other data strings written to the disc drive to reconstruct the data string with uncorrectable errors.
Abstract:
Implementations described and claimed herein includes a storage device comprising a plurality of readers, including a first subset of readers configured to read a first subset of tracks and a second subset of readers configured to read a second subset of tracks, the first subset of tracks being wider than the second subset of tracks. In another implementation, the readers in the first subset of readers are wider than the readers in the second subset of readers. The wider readers may be configured to recover servo information and the narrow readers may be configured to recover data information. The storage devices may include two-dimensional magnetic recording, conventional perpendicular magnetic recording, shingled magnetic recording, multi-sensor magnetic recording, and interlaced magnetic recording.
Abstract:
A transducing head may be connected to a controller and positioned proximal a data storage medium. The controller can be connected to a wear level identification circuit and configured to identify a first data region of the data storage medium having a first wear level and a second data region of the data storage medium having a second wear level. The first and second wear levels can respectively correspond to different amounts of component degradation of the data storage device.