摘要:
Various embodiments of the present invention are directed to color-center-based quantum computer architectures that are both scalable and defect tolerant and to methods for fabricating color-center-based quantum computer architectures. In one embodiment of the present invention, a node of a quantum computer architecture comprises a first photonic device configured to transmit electromagnetic waves, a color center embedded in diamond and coupled to the first photonic device, and a switch located between the first photonic device and a bus waveguide. The switch can be configured to selectively control transmission of electromagnetic waves between the bus waveguide and the color center.
摘要:
Various embodiments of the present invention are directed to color-center-based quantum computer architectures that are both scalable and defect tolerant and to methods for fabricating color-center-based quantum computer architectures. In one embodiment of the present invention, a node of a quantum computer architecture comprises a first photonic device configured to transmit electromagnetic waves, a color center embedded in diamond and coupled to the first photonic device, and a switch located between the first photonic device and a bus waveguide. The switch can be configured to selectively control transmission of electromagnetic waves between the bus waveguide and the color center.
摘要:
Various embodiments of the present invention are directed to color-center-based quantum computer architectures that are both scalable and defect tolerant and to methods for fabricating color-center-based quantum computer architectures. In one embodiment of the present invention, a node of a quantum computer architecture comprises a first photonic device configured to transmit electromagnetic waves, a color center embedded in diamond and coupled to the first photonic device, and a switch located between the first photonic device and a bus waveguide. The switch can be configured to selectively control transmission of electromagnetic waves between the bus waveguide and the color center.
摘要:
Various embodiments of the present invention are directed to color-center-based quantum computer architectures that are both scalable and defect tolerant and to methods for fabricating color-center-based quantum computer architectures. In one embodiment of the present invention, a node of a quantum computer architecture comprises a first photonic device configured to transmit electromagnetic waves, a color center embedded in diamond and coupled to the first photonic device, and a switch located between the first photonic device and a bus waveguide. The switch can be configured to selectively control transmission of electromagnetic waves between the bus waveguide and the color center.
摘要:
Various embodiments of the present invention are directed to compact systems for generating polarization-entangled photons. In one embodiment of the present invention, a polarization entangled-photon state source comprises a single transmission layer configured for transmitting electromagnetic radiation. The transmission layer includes a beamsplitter and a down-conversion device, both of which are configured to convert a pump beam into first and second signal beams and first and second idler beams. The transmission layer also includes a mode converter configured to invert electric and magnetic field components of both the first signal beam and the first idler beam, and a combiner configured to receive the first and second signal beams and the first and second idler beams and output the first and second signal beams and the first and second idler beams in an entangled polarization states.
摘要:
Various embodiments of the present invention are directed to compact systems for generating polarization-entangled photons. In one embodiment of the present invention, a polarization entangled-photon state source comprises a single transmission layer configured for transmitting electromagnetic radiation. The transmission layer includes a beamsplitter and a down-conversion device, both of which are configured to convert a pump beam into first and second signal beams and first and second idler beams. The transmission layer also includes a mode converter configured to invert electric and magnetic field components of both the first signal beam and the first idler beam, and a combiner configured to receive the first and second signal beams and the first and second idler beams and output the first and second signal beams and the first and second idler beams in an entangled polarization states.
摘要:
Various embodiments of the present invention are directed to methods and systems for generating random numbers. In one embodiment, a quantum random number generator comprises: a state generator configured to generate a quantum system in a coherent state; a polarization states analyzer configured to project the quantum system onto one of four different polarization states, and detect each of the four different polarization states; a raw bit generator configured to convert the quantum system into a single photon and detect the single photon in either a first polarization state that corresponds to a first binary number or a second polarization state that corresponds to a second binary number; and a system control configured to receive signals from the polarization states analyzer and the raw bit generator, the signals corresponding to the polarization states, and output a random number based on the first and second polarization states of the single photon.
摘要:
A nanoparticle is able to emit single photons. A waveguide is coupled to the nanoparticle and able to receive the single photons. A backreflector is optically coupled to the waveguide and configured to reflect the single photons toward the waveguide.
摘要:
Various embodiments of the present invention are directed to quantum-dot-based quantum computer architectures that are scalable and defect tolerant and to methods for fabricating quantum dots in quantum computer architectures. In one embodiment of the present invention, a node of quantum computer architecture comprises a first photonic device supported by a substrate. The quantum computer architecture also includes a number of quantum dots coupled to the first photonic device, and a switch supported by the substrate that controls transmission of electromagnetic waves between a bus waveguide and the quantum dots.
摘要:
A nanoparticle is able to emit single photons. A waveguide is coupled to the nanoparticle and able to receive the single photons. A backreflector is optically coupled to the waveguide and configured to reflect the single photons toward the waveguide.