Abstract:
A display panel is provided. The display panel comprises a display panel; and a light modulation substrate disposed opposite to the display panel. The light modulation substrate includes a base layer and a transparent dielectric layer covering the base layer. The base layer has a first surface facing the display panel and an opposing second surface, and the transparent dielectric layer is disposed on the first surface of the base layer. A plurality of reflective gratings are disposed on the base layer. The transparent dielectric layer has a first surface facing the base layer and an opposing second surface, and the second surface of the transparent dielectric layer is a transparent dielectric layer surface. The transparent dielectric layer has a refractive index of n, and n>1. Outgoing light of the display device converges to a plurality of light-emitting points outside the display device.
Abstract:
The disclosure provides an array substrate and a color filter substrate of a capacitive touch control screen, a touch control display device and a method for driving the touch control display device, so as to achieve the self-capacitive multi-point touch. The array substrate of the capacitive touch control screen includes: a peripheral area and a display area; a plurality of pixel units with pixel electrodes arranged in the display area; a plurality of touch control electrodes; and touch control electrode lead wires connected with a module configured to detect a touch control signal, wherein each of the touch control electrodes is connected respectively with one of the touch control electrode lead wires.
Abstract:
The invention discloses an In-Cell touch panel and a touch display device. The In-Cell touch panel includes: a color filter substrate; a common electrode disposed on the color filter substrate; an array substrate disposed opposite the color filter substrate; an IC disposed on the array substrate; a plurality of data lines and a plurality of gate lines disposed perpendicular to the data lines are disposed on the array substrate; the common electrode is divided into a plurality of common electrode lines, where the common electrode lines also function as drive electrodes or sense electrodes, and the IC is a timesharing IC used for providing the In-Cell touch panel with display signals and touch drive signals and detecting the touch signals of the In-Cell touch panel. The In-Cell touch panel provided by the present invention can effectively reduce the requirement for load of the timesharing IC by the In-Cell touch panel.
Abstract:
A display panel and a display device are disclosed. Each of pixels in the display panel includes a pixel area; a switch element located near an intersection of a data line and a scan line; a pixel electrode electrically connected to the switch element; and a common electrode located on the first substrate. The common electrode comprises first common electrodes superposing data lines or scan lines and having the same first width; and second common electrodes overlapping with respective pixel areas and having the same second width, the first width is the same as the second width. Alternatively, the common electrode comprises first slits, which have the same first slit width, located above data lines and scan lines, and second slits, which have the same second slit width and are located in respective pixel areas. The first slit width is the same as the second slit width.
Abstract:
An array substrate includes a plurality of pixel units, each of the pixel units includes a pixel electrode and a common electrode that are insulated from each other, and a conductive layer that is electrically connected in parallel to the common electrode. A double-layer metal layer is deposited on the common electrode at an opaque region of the pixel electrode to form a ring structure around a transparent region of the pixel electrode, thus reducing the resistances of the common electrodes. The ring structure can be U-shaped, half-ring shaped, or full-ring shaped.
Abstract:
A method of electrically testing an in-cell touch screen is disclosed. The in-cell touch screen includes a display electrode, a driving line, and a detecting line. The detecting line intersects the driving line. The method includes floating the display electrode and performing at least one of: A) applying a first predetermined voltage to one column of adjacent columns of the driving line or one row of adjacent rows of the driving line, and grounding the other column of the adjacent columns or the other row of the adjacent rows, and B) applying a second predetermined voltage to one column of adjacent columns of the detecting line or one row of adjacent rows of the detecting line, and grounding the other column of the adjacent columns or the other row of the adjacent rows. The method also includes determining whether the driving line or the detecting line is shorted or opened.
Abstract:
The present invention provides a touch panel and a touch display device, the touch panel includes: a transparent substrate; a conductive layer disposed on the transparent substrate, where the conductive layer includes a plurality of first conductive patterns and a plurality of second conductive patterns intersecting with the plurality of first conductive patterns, and each of the second conductive patterns is separated into multiple segments by the plurality of first conductive patterns; a color resistance insulating layer disposed on the conductive layer, where the color resistance insulating layer includes a plurality of through-holes; and a metal bridging layer disposed on the color resistance insulating layer, where the multiple segments of the second conductive pattern are connected together by the metal bridging layer via the through-holes. With the technical solutions of the present invention, the color resistor is used as the insulating layer to replace the existing organic film layer, thus avoiding the undesirable risk brought about by the manufacturing process for coating the organic film, simplifying the manufacturing process and reducing the production costs.
Abstract:
An in-cell touch color filter substrate is disclosed. The color filter substrate includes a substrate including a plurality of display areas and a plurality of non-display areas, where each non-display area surrounds one of the display areas. The color filter substrate also includes a first metal layer, a first organic film layer, a second metal layer including a plurality of conductive pads provided in the non-display areas, and a second organic film layer, successively formed on the substrate. In addition, a plurality of through holes or through slots are formed on the first organic film layer in the non-display areas, where the conductive pads electrically connect with the first metal layer via the through holes or through slots, and where the conductive pads are exposed through the second organic film layer.
Abstract:
Disclosed are a display panel and an electronic device. In a fingerprint recognition stage, at least one of the first and second organic light-emitting structures function as a light source of the fingerprint recognition unit; the emergent light of the at least one of the first and second organic light-emitting structures has a first spectral range, the transmission spectral range of the first color filter film is a second spectral range, and the spectral range corresponding to visible light and near-infrared light is a third spectral range. The first spectral range is located within the second spectral range which is located within the third spectral range, light from at least a part of the wave band located within the third spectral range and outside the second spectral range is absorbed or reflected by the first color filter film.
Abstract:
A touch liquid crystal display device includes a first substrate and a second substrate opposite to each other, and a liquid crystal layer disposed between the first and second substrates. The first substrate includes a touch layer disposed on a surface of the first substrate facing the liquid crystal layer, an insulating layer disposed on a surface of the touch layer and covering the touch layer, and a pixel array structure disposed on a surface of the insulating layer facing away from the touch layer. The touch layer is disposed between the pixel array structure and the first substrate. Only a filming process and a photoetching process of the touch layer and a deposition process of the insulating layer are additionally required to transform a non-touch liquid crystal display device to a touch liquid crystal display device.