摘要:
Media processing methods, systems and application program interfaces (APIs) are described. In but one embodiment, a media engine component, also referred to as a media engine, provides a simple and unified way of rendering media from an origin to a destination of choice without requiring intimate knowledge about the underlying components, their connectivity and management. Clients of the media engine need not worry about how to render the particular media, but rather can simply focus on what media to render and where to render the media. In at least one embodiment, a media session is provided and is encapsulated by the media engine and provides a mechanism by which additional components are made transparent to the application and, in at least some embodiment, the media engine. In some embodiments, the media engine and media session provide a simple API for building, configuring, and manipulating a pipeline of components (e.g. media sources, transforms, and sinks) for media flow control between an origin and one or more destinations.
摘要:
Media processing methods, systems and application program interfaces (APIs) are described. In but one embodiment, a media engine component, also referred to as a media engine, provides a simple and unified way of rendering media from an origin to a destination of choice without requiring intimate knowledge about the underlying components, their connectivity and management. Clients of the media engine need not worry about how to render the particular media, but rather can simply focus on what media to render and where to render the media. In at least one embodiment, a media session is provided and is used by the media engine and provides a mechanism by which additional components are made transparent to the application and, in at least some embodiment, the media engine. In some embodiments, the media engine and media session provide a simple API for building, configuring, and manipulating a pipeline of components (e.g. media sources, transforms, and sinks) for media flow control between an origin and one or more destinations.
摘要:
A timeline source is described. In an implementation, a method includes examining a plurality of nodes within a media timeline, where at least two of the nodes reference respective media. The media timeline is for exposure over an API. The media timeline is divided into one or more presentations. Each presentation describes rendering of the media for a particular interval of time.
摘要:
Systems and methods described herein provide access to multimedia content of varying types from a variety of sources using a uniform resource locator (URL).
摘要:
Media processing methods, systems and application program interfaces (APIs) in which a destination component, also referred to as a destination, provides an application with a simple and unified way of rendering, archiving, broadcasting (or other types of media output processing) media from an origin to a target of choice, without requiring the application to have intimate knowledge about underlying components, their connectivity and management. For example, applications can use a destination to help manage the rendering or archiving (or other processing) of the particular media.
摘要:
Systems and methods for processing input media in a computing device are described. In one aspect, a reconstructed frame is cached according to a set of criteria. A request to scrub to a predictive frame of input media is received. Responsive to receiving the request, the predictive frame is decoded starting with the reconstructed frame.
摘要:
A computing system, which is in communication with a multimedia source and that includes at least one application for processing multimedia content from the multimedia source, includes an Application Programming Interface (API) for obtaining basic multimedia information that may be required by applications to process the multimedia content. By doing this, the invention enables multimedia application(s) to easily obtain the basic information from the API in a predetermined and standard manner, without having to obtain the information directly from the multimedia source, thereby reducing the functionality that has to be programmed directly into the application(s) for obtaining the basic information, and thereby reducing the cost, time, and resources that are required for creating the multimedia application(s).
摘要:
A system and methods provide handling of variable rate playback in a multimedia computer architecture. The systems and methods provide data structures and interfaces that enable a computer architecture and components therein with the ability to playback data at speeds faster and slower than real-time, to playback data in reverse, and to change the rate of playback at any point during playback. One embodiment is a method for providing low-latency, glitch-free changes in a multimedia architecture. Other embodiments are directed to defining multimedia component responsibilities for making rate changes, allowing rate changes to work with standard playback types, coder-decoders, and renderers. The methods include determining a minimum of the maximum reported playback rates and determining minimum and maximum playback rates in a set of modes including: reverse skip mode, reverse key frame mode, reverse full mode, forward full mode, forward key frame mode, and forward skip mode.
摘要:
Audio data having M channels includes a header with metadata specifying a conversion function for converting the M channels of digital audio data into N channels of data. The metadata is a string of coefficients, which may be specified by the content author, to define to conversion of the M channels of digital audio data into N channels.
摘要:
Audio data having M channels includes a header with metadata specifying a conversion function for converting the M channels of digital audio data into N channels of data. The metadata is a string of coefficients, which may be specified by the content author, to define to conversion of the M channels of digital audio data into N channels.