Abstract:
A printhead subsystem is disclosed for selectively removing portions of a layer of dampening fluid disposed over an arbitrarily reimageable surface in a variable data lithographic system. The subsystem comprises a thermal printhead element disposed proximate the arbitrarily reimageable surface, and driving circuitry communicatively connected to the thermal printhead for selectively temporarily heating the thermal printhead to an elevated temperature. Portions of the dampening fluid layer proximate the thermal printhead are vaporized and driven off the arbitrarily reimageable surface by the thermal printhead when the thermal printhead is at the elevated temperature, to thereby form voids in the dampening fluid layer.
Abstract:
Disclosed are methods and apparatus for flooding link state packets or packet data units (LSP's) from a first node to one other LSP receiving node, where the LSP's are flooded in an order that is related to relative costs of various paths emanating from the first node. That is, the first node sends its own LSP first since the first node has no cost relative to itself. The first node then sends other LSP's that are associated with a plurality of other LSP sending nodes that have previously flooded their LSP's to the first node. These other LSP's are sent by the first node to the other LSP receiving node in an order related to the relative costs associated with the paths from the first node to each of the other LSP sending nodes which had previously sent the other LSP's to the first node.
Abstract:
Methods and arrangements to rapidly adjust the trim of a watercraft are disclosed. More specifically, embodiments comprise a sensor to quickly detect changes in the trim angle of a watercraft and a driver adapted to effect rapid changes in the trim angle. For example, many embodiments include large hydraulic pumps and hydraulic connections to adjust the angle of a trim adjuster such as the angle of trim tabs, an outboard motor, or a stern drive. Some embodiments implement high torque electric motors or high capacity pneumatic systems. The drivers may, for example, effect changes in the angle of the trim adjuster within two seconds. In one embodiment, the driver may effect a change in the trim angle within one second or less.
Abstract:
A media sheet inverter apparatus and method is disclosed. The media sheet inverter, according to one embodiment of the disclosure, comprises an input nip configured to receive a media sheet and a reversing roll nip configured to receive a media sheet from the input nip. The media sheet is subsequently held within the inverter for a predetermined time before being ejected to an output nip configured to receive the media sheet from the reversing roll nip. The inverter apparatus and method is especially suited to inverting alternating media sheets.
Abstract:
A goggle based light-weight VOG system includes an integral calibration laser and at least one digital camera connected to and powered by a laptop computer through a firewire connection. The digital camera may digitally center the pupil in both the X and Y directions. A calibration mechanism may be incorporated onto the goggle base. An EOG system may also be incorporated directly into the goggle. The VOG system may track and record 3-D movement of the eye, track pupil dilation, head position and goggle slippage. An animated eye display provides data in a more meaningful fashion. The VOG system is a modular design whereby the same goggle frame or base is used to build a variety of digital camera VOG systems.
Abstract:
A printing system sheet feeder apparatus and method is provided. The printing system feeder includes a front nudger roll positioned near the leading edge of the top sheet of a sheet stack and the front nudger roll is capable of advancing the top sheet. In addition, the printing system sheet feeder includes a separation nip aligned with the front nudger roll, the front nudger roll being capable of receiving the top sheet advanced by the front nudger roll and advancing the top sheet in a direction away from the front nudger. A rear nudger roll is positioned near the trailing edge of the top sheet and is capable of advancing the sheet directly below the top sheet while the top sheet is being advanced by the front nudger roll and/or separation nip, thereby increasing the overall sheet feeding rate to the printing system.
Abstract:
A system includes at least first and second marking modules, each of the marking modules including a marking engine and at least one media feeder which feeds print media to the marking engines. First and second output modules receive print media from the first and second marking modules. The first and second output modules each include a finisher. At least one print media network selectively conveys print media between each of the marking modules and each of the output modules. The first and second output modules each include a portion of the print media network, the portion extending between an inlet interface and an outlet interface of the module.
Abstract:
A printing system includes a monochrome marking engine for printing monochrome images and a color marking engine which can print both color and monochrome images. A previewer identifies attributes of the print job, for example, for each page, identifying any monochrome and color images. A user interface enables a user to select a print mode for the print job from a plurality of print modes. A scheduler is responsive to the previewer and the user interface for assigning pages of the print job among the marking engines based on the attributes of the print job and the user-selected print mode. A marking engine controller is in communication with the scheduler for controlling the at least one monochrome marking engine to render pages of the print job assigned thereto and for controlling the at least one color marking engine to render pages of the print job assigned thereto.
Abstract:
An integrated printing system is provided and includes at least two generally vertically aligned image marking engines and at least two generally horizontally aligned image marking engines. The printing system further includes at least one generally horizontal interface media transport for transporting media between and to the vertically aligned and the horizontally aligned image marking engines.
Abstract:
Parallel printing systems include first and second adjacent electronic printers and at least one sheet bypass section extending around the second electronic printer to provide a sheet transporting path overlying the second electronic printer and bypassing the second electronic printer. The sheet bypass section includes an output for merging printed sheets from the first electronic printer with printed sheets printed by the second electronic printer. The output preferably comprises a intermediate transport section having a first input aligned with the output of the bypass section and a second input aligned with the output of the second electronic printer.