Abstract:
A method for allocating resources for a scheduling request indicator (SRI) is disclosed. An SRI cycle period for use by user equipment (UE) within a cell is transmitted from a NodeB in a cell to UE within the cell. The NodeB transmits a specific SRI subframe offset and an index value to the particular UE within the cell. The specific SRI subframe offset and the index value enable the UE to determine a unique combination of cyclic shift, RS orthogonal cover, data orthogonal cover, and resource block number for the UE to use as a unique physical resource for an SRI in the physical uplink control channel (PUCCH).
Abstract:
Within a wireless network, feedback information from user equipment (UE) to a control node (eNodeB) is necessary to support various functions. A UE receives an allocation from the eNodeB comprising a plurality of periodic transmission instances for a channel quality indicator (CQI) and a schedule comprising a plurality of periodic transmission instances for a rank indicator (RI), wherein the CQI comprises RI and other CQI fields. The UE then transmits an RI without transmitting the other CQI fields in a transmission instance allocated for both RI and other CQI fields.
Abstract:
A method for allocating resources for a scheduling request indicator (SRI) is disclosed. An SRI cycle period for use by user equipment (UE) within a cell is transmitted from a NodeB in a cell to UE within the cell. The NodeB transmits a specific SRI subframe offset and an index value to the particular UE within the cell. The specific SRI subframe offset and the index value enable the UE to determine a unique combination of cyclic shift, RS orthogonal cover, data orthogonal cover, and resource block number for the UE to use as a unique physical resource for an SRI in the physical uplink control channel (PUCCH).
Abstract:
Transmitting a acknowledge/not acknowledge (ACK/NACK) response in a wireless cellular network by mapping the data value into a cyclic shifted version of a reference signal. A subframe is formed with a plurality of symbols with certain symbols designated as reference signal (RS) symbols. The receiver and transmitter both know when an ACK/NACK response is expected. If an ACK/NACK response is not expected, then an RS is inserted in the duration of symbols designated as RS symbols. If an ACK/NACK response is expected, then the ACK/NACK response is embedded in one or more of the symbols designated as RS symbols. The subframe is transmitted to a receiver, and the receiver can determine the ACK/NACK value in the RS symbol, if present, and also use the RS symbol for coherent demodulation of a CQI (channel quality indicator) or data.
Abstract:
This invention measures the propagation delay τ1 between the user equipment and a first cooperating unit and the propagation delay τ2 between the user equipment and a second cooperating unit. These propagation delays are used to compute a timing advance amount to the user equipment to enable coordinated multi-point reception. In a first embodiment one cooperating unit receives a function of the propagation delay, computes the timing advance amount and transmits a timing advance command to the user equipment. In a second embodiment a central unit performs these operations.
Abstract:
Transmitting a ACK/NACK response in a wireless cellular network by mapping the data value into a cyclic shifted version of a reference signal. A subframe is formed with a plurality of symbols with certain symbols designated as reference signal (RS) symbols. The receiver and transmitter both know when an ACK/NACK response is expected. If an ACK/NACK response is not expected, then an RS is inserted in the duration of symbols designated as RS symbols. If an ACK/NACK response is expected, then the ACK/NACK response is embedded in one or more of the symbols designated as RS symbols. The subframe is transmitted to a receiver, and the receiver can determine the ACK/NACK value in the RS symbol, if present, and also use the RS symbol for coherent demodulation of a CQI (channel quality indicator) or data.
Abstract:
A method for allocating resources for a scheduling request indicator (SRI) is disclosed. An SRI cycle period for use by user equipment (UE) within a cell is transmitted from a NodeB in a cell to UE within the cell. The NodeB transmits a specific SRI subframe offset and an index value to the particular UE within the cell. The specific SRI subframe offset and the index value enable the UE to determine a unique combination of cyclic shift, RS orthogonal cover, data orthogonal cover, and resource block number for the UE to use as a unique physical resource for an SRI in the physical uplink control channel (PUCCH).
Abstract:
Within a wireless network, feedback information from user equipment (UE) to a control node (eNodeB) is necessary to support various functions. A UE receives an allocation from the eNodeB comprising a plurality of periodic transmission instances for a channel quality indicator (CQI) and a schedule comprising a plurality of periodic transmission instances for a rank indicator (RI), wherein the CQI comprises RI and other CQI fields. The UE then transmits an RI without transmitting the other CQI fields in a transmission instance allocated for both RI and other CQI fields.
Abstract:
A transmission of information from a secondary to a primary node occurs in a plurality of N logical time durations on an uplink channel in a wireless network. A scheme for mapping between logical uplink control channel (PUCCH) resource blocks (RBs) and physical RBs (PRBs) used by PUCCH is described. A logical uplink control resource block index nLRB is derived by the secondary node in response to information from the primary node. The secondary node then maps the logical uplink control resource block index nLRB to a first uplink physical resource block index nPRB,1 of a plurality of uplink physical resource blocks, wherein nPRB,1=nLRB/2 if nLRB is even and nPRB,1=NPRB−ceil(nLRB/2) if nLRB is odd; wherein NPRB is the total number of the plurality of uplink physical resource blocks; and wherein ceil denotes the ceiling operation. The secondary node then transmits an uplink control information in a subframe using one of the plurality of uplink physical resource blocks indexed by nPRB,1.
Abstract:
Transmission of random access preamble structures within a cellular wireless network is based on the use of cyclic shifted constant amplitude zero autocorrelation (“CAZAC”) sequences to generate the random access preamble signal. A pre-defined set of sequences is arranged in a specific order. Within the predefined set of sequences is an ordered group of sequences that is a proper subset of the pre-defined set of sequences. Within a given cell, up to 64 sequences may need to be signaled. In order to minimize the associated overhead due to signaling multiple sequences, only one logical index is transmitted by a base station serving the cell and a user equipment within the cell derives the subsequent indexes according to the pre-defined ordering. Each sequence has a unique logical index. The ordering of sequences is identified by the logical indexes of the sequences, with each logical index uniquely mapped to a generating index. When a UE needs to transmit, it produces a second sequence using the received indication of the logical index of the first sequence and an auxiliary parameter and then produces a transmission signal by modulating the second sequence.