Abstract:
A method is disclosed for reducing noise and vibration within a structure of a mobile platform, wherein the noise and vibration are at least in part caused by airflow over an outer skin of the mobile platform parallel to a longitudinal line extending fore to aft along the structure. The method may involve forming the structure such that a fundamental panel vibration mode shape of the structure is not parallel to the longitudinal line.
Abstract:
A computer system enables a noise level associated with a structural substrate to be reduced. The computer system includes a memory device for storing data, and a processor in communication with the memory device. The processor is programmed to define a modulus of elasticity, a thickness, and/or a distribution associated with one or more damping elements coupleable to the structural substrate, define at least one operating parameter associated with the structural substrate and the one or more damping elements, simulate a first performance of the structural substrate and/or the one or more damping elements to generate a first performance data set; and determine whether the first performance data set satisfies a predetermined threshold. The first performance data set is associated with the at least one operating parameter and the modulus of elasticity, the thickness, and/or the distribution associated with the one or more damping elements.
Abstract:
A computer system enables a noise level associated with a structural substrate to be reduced. The computer system includes a memory device for storing data, and a processor in communication with the memory device. The processor is programmed to define a modulus of elasticity, a thickness, and/or a distribution associated with one or more damping elements coupleable to the structural substrate, define at least one operating parameter associated with the structural substrate and the one or more damping elements, simulate a first performance of the structural substrate and/or the one or more damping elements to generate a first performance data set; and determine whether the first performance data set satisfies a predetermined threshold. The first performance data set is associated with the at least one operating parameter and the modulus of elasticity, the thickness, and/or the distribution associated with the one or more damping elements.
Abstract:
A panel includes a structural substrate and a damping element including a viscoelastic material (VEM) layer coupleable to the structural substrate of the aircraft, and a constraining layer coupled to the VEM layer. The VEM layer is configured to dampen a vibration of the structural substrate. The constraining layer is configured to apply a shear force to the VEM layer.
Abstract:
A panel includes a structural substrate and a damping element including a viscoelastic material (VEM) layer coupleable to the structural substrate of the aircraft, and a constraining layer coupled to the VEM layer. The VEM layer is configured to dampen a vibration of the structural substrate. The constraining layer is configured to apply a shear force to the VEM layer.
Abstract:
A method of forming a molybdenum composite hybrid laminate is disclosed. The method includes treating a surface of each of a plurality of molybdenum foil layers. The method further includes interweaving the surface treated molybdenum foil layers with a plurality of composite material layers. The method further includes bonding with an adhesive layer each of the surface treated molybdenum foil layers to adjacent composite material layers to form a molybdenum composite hybrid laminate having improved yield strength.
Abstract:
A method of forming a molybdenum composite hybrid laminate is disclosed. The method includes treating a surface of each of a plurality of molybdenum foil layers. The method further includes interweaving the surface treated molybdenum foil layers with a plurality of composite material layers. The method further includes bonding with an adhesive layer each of the surface treated molybdenum foil layers to adjacent composite material layers to form a molybdenum composite hybrid laminate having improved yield strength.