Abstract:
This linear motor apparatus includes: a first linear motor and a second linear motor, movable bodies of which move in the same direction in a linked manner; a first control portion that causes the first linear motor to produce thrust to apply a load to a pressurizing target via the movable bodies; and a second control portion that causes the second linear motor to produce thrust and controls the thrust, wherein, if the first control portion is causing a load to be applied to the pressurizing target, then the second control portion causes the second linear motor to produce thrust that cancels an external force produced to the movable bodies.
Abstract:
The processing apparatus performs predetermined processing for measurement data transmitted from the sensor, in which the processing apparatus acquires transmission destination information indicating a predetermined area in a server apparatus in an outside in which processed data subjected to the predetermined processing is to be stored, from a relay apparatus that performs relay processing between the processing apparatus and the server apparatus in order to transmit the processed data from the processing apparatus to the server apparatus, when the relay apparatus is communicatively connected to the communication unit in a state before building of a network between the processing apparatus and the server apparatus, and generates, after the acquisition of the transmission destination information, transmission-processed data in a form in which the relay apparatus is able to execute the relay processing, by adding information relating to the predetermined area indicated by the transmission destination information to the processed data.
Abstract:
An object of the present invention is to preferably detect the failure accompanied with the decrease in the pre-load in a ball screw unit. The failure diagnosis is performed for the ball screw unit on the basis of a combination of a resonance frequency in an axial direction of a predetermined machine assembly including the ball screw unit and a motor and a position of a nut member on a screw shaft corresponding to the resonance frequency as provided when the screw shaft is driven and rotated by the motor.
Abstract:
A control device for controlling a linear actuator having a linear motor and a brake device includes a magnetic pole position estimation means to estimate which of a plurality of sections obtained by dividing a magnetic pole position of 0° to 360°, the mover is located in on the basis of a direction of movement of the mover by pulse energization, a magnetic pole position setting means to perform direct current excitation at an estimated magnetic pole position estimated by the magnetic pole position estimation means and set the estimated magnetic pole position as a magnetic pole position of the mover, and a brake control means to turn on a brake device before pulse energization by the magnetic pole position estimation means is performed and turn off the brake device after the magnetic pole position estimation means estimates the section in which the mover is located.
Abstract:
Provided is a state diagnosis system, which is applied to a rolling guide device in which a moving member including an endless circulation path for rolling elements is freely movable along a track member, and which is configured to appropriately recognize a state of a rolling surface of the track member. The state diagnosis system includes: a sensor configured to detect a physical quantity exhibited when the moving member is moving along the track member; a signal processing unit configured to process an output signal from the sensor to output analysis data; and a determination processing unit configured to compare the analysis data with threshold value data to determine whether or not the rolling guide device has an abnormality. Further, when a cycle at which each of the rolling elements, which moves back and forth in the endless circulation path, enters a loadpath from a no-loadpath is represented by t, a data collection time period T, for which the signal processing unit takes in the output signal from the sensor, is set to satisfy T≥t.
Abstract:
A fault detection sensor-equipped actuator is provided which can easily detect a fault in at least one of a linear guide unit and a ball screw unit, using a shared sensor. In an actuator (10) including a linear guide unit (4) that guides linear movement of a movable body (1) and a ball screw unit (7) that drives the movable body (1) in an axial direction of a screw shaft (6), a sensor (18) configured to detect a fault in the actuator (10) is placed in a housing (11) where a coupling (12) that couples the screw shaft (6) and a motor (14) for rotating the screw shaft (6) is housed.
Abstract:
Provided is a state diagnosis system, which is applied to a rolling guide device in which a moving member including an endless circulation path for rolling elements is freely movable along a track member, and which is configured to appropriately recognize a state of a rolling surface of the track member. The state diagnosis system includes: a sensor configured to detect a physical quantity exhibited when the moving member is moving along the track member; a signal processing unit configured to process an output signal from the sensor to output analysis data; and a determination processing unit configured to compare the analysis data with threshold value data to determine whether or not the rolling guide device has an abnormality. Further, when a cycle at which each of the rolling elements, which moves back and forth in the endless circulation path, enters a loadpath from a no-loadpath is represented by t, a data collection time period T, for which the signal processing unit takes in the output signal from the sensor, is set to satisfy T≥t.
Abstract:
A linear motor device includes a linear motor and a control unit configured to apply a load to a pressurizing object by causing a movable part of the linear motor to move. After causing the movable part to move toward the pressurizing object at a predetermined first speed based on position control, the control unit controls the movable part to move by performing deceleration to a second speed which is slower than the first speed and at which the pressure applied to the pressurizing object is less than or equal to a predetermined pressure when the movable part starts to apply the pressure to the pressurizing object, and the control unit causes the movable part to move until the current flowing through the linear motor is greater than or equal to a predetermined current limit value.
Abstract:
An abnormality diagnosis system that diagnoses an abnormality related to each control shaft in equipment in which the plurality of control shafts, each including a motor and an output unit driven by the motor, are incorporated, includes: a plurality of vibration sensors that are provided for the plurality of control shafts, respectively, and that detect vibration occurring in connection with driving of the motor corresponding to each control shaft; a calculation unit that calculates, for each of the plurality of control shafts, vibration levels in a plurality of predetermined frequency ranges, based on vibration information detected by each of the plurality of vibration sensors; and a diagnosis unit that diagnoses an abnormality related to each control shaft, based on a distribution state, across the plurality of predetermined frequency ranges and across the plurality of control shafts, of the vibration levels calculated by the calculation unit.
Abstract:
An abnormality diagnosis system that diagnoses an abnormality related to each control shaft in equipment in which the plurality of control shafts, each including a motor and an output unit driven by the motor, are incorporated, includes: a plurality of vibration sensors that are provided for the plurality of control shafts, respectively, and that detect vibration occurring in connection with driving of the motor corresponding to each control shaft; a calculation unit that calculates, for each of the plurality of control shafts, vibration levels in a plurality of predetermined frequency ranges, based on vibration information detected by each of the plurality of vibration sensors; and a diagnosis unit that diagnoses an abnormality related to each control shaft, based on a distribution state, across the plurality of predetermined frequency ranges and across the plurality of control shafts, of the vibration levels calculated by the calculation unit.