摘要:
An ophthalmic apparatus may include: a wavelength sweeping light source; a reference optical system; a calibration optical system; a light receiving element configured to receive calibration interference light which is a combination of calibration light and reference light; and a signal processor configured to sample a calibration interference signal outputted from the light receiving element when it receives the calibration interference light. The signal processor may sample the calibration interference light in at least first and second frequency bands, which are different and used for measuring a specific region of a subject eye. The ophthalmic apparatus calculates a difference between first and second waveforms, the first waveform being a waveform of the calibration interference signal that is sampled in the first frequency band and Fourier transformed, the second waveform being a waveform of the calibration interference signal that is sampled in the second frequency band and Fourier transformed.
摘要:
An optical coherence tomography includes a light source, a light separator, a light generator configured to generate interference light, a detector configured to detect the interference light, a first optical element, and at least one of second optical elements comprising a pair of surfaces, and performs forming a tomographic image of a subject. The first optical element is arranged on a measurement light path so as to be closest to the subject, and satisfies at least one of following conditional formulas: −(W−S) X−W+S, [c2] W: a predetermined operation distance U: a depth of interest S: a range of interest X: a distance which is greater than W+U+S and minimal among distance(s) between the pair of surfaces Z: a shallowest position of the area of interest relative to an origin position.
摘要:
An ophthalmic device that may include: a light source; a measurement optical system that generates measurement light; a first reference optical system that generates first reference light; a second reference optical system that generates second reference light; and an interference optical system that generates measurement interference light from the measurement light and the first reference light, and reference interference light from the first and second reference light. The measurement optical system may include a switching unit that switches between a first state in which the subject eye is irradiated with the light from the light source and a second state in which the light from the light source is guided to the second reference optical system branching from the measurement optical system. The controller may control the switching unit to detect the measurement interference light in the first state, and the reference interference light in the second state.
摘要:
Provided is an optical tomographic device for simultaneously acquiring a plurality of tomographic images at a same position in a subject without narrowing a depthwise measurement range. A measurement light generator generates at least two measurement lights with different optical path lengths, superimposes the at least two measurement lights, radiates the resultant light to a subject, and splits reflected light reflected from the subject into at least two reflected lights. A reference light generator generates at least two reference lights with different optical path lengths. An interfering light generator combines the at least two reflected lights and the at least two reference lights having corresponding different optical path lengths, to generate at least two interfering lights. An interfering light detector detects the at least two interfering lights independently by at least two interfering light detectors.
摘要:
A sample clock generator includes a first optical path and a second optical path through which input lights are guided, an optical phase shifter to shift a phase of the input light guided through the first optical path, an interference-light generating unit to combine a phase-shifted input light and the input light guided through the second optical path to thereby generate an interference light for sample clock, a splitting unit to split the interference light for sample clock into two split lights having different phases, one light receiving unit to at least receive one split light from among the two split lights having different phases, the other light receiving unit to at least receive the other split light, a signal generating unit to generate a sample clock signal based on signals outputted from the one light receiving unit and the other light receiving unit.