Abstract:
Systems, methods and instructions for creating building models of physical structures is disclosed. The building model may be a collection of floors defined by outlines containing regions that may be offset relative to a main region, and a collection of connectors. Connectors may have connection points for tracking, routing and sizing. Connectors may indicate elevation changes through georeferenced structural features. Signal elements may also be features that provide corrections when tracking. Feature descriptors are data that describes the structural configuration and signal elements enabling them to be matched to previously collected data in a database. User interface elements assist a user of a tracking device in collecting floor information, structural features and signal features and validating certain collected information based on previously known information. The height of floors may also be inferred based on sensor data from the tracking device.
Abstract:
Systems, methods and instructions for creating building models of physical structures is disclosed. The building model may be a collection of floors defined by outlines containing regions that may be offset relative to a main region, and a collection of connectors. Connectors may have connection points for tracking, routing and sizing. Connectors may indicate elevation changes through georeferenced structural features. Signal elements may also be features that provide corrections when tracking. Feature descriptors are data that describes the structural configuration and signal elements enabling them to be matched to previously collected data in a database. User interface elements assist a user of a tracking device in collecting floor information, structural features and signal features and validating certain collected information based on previously known information. The height of floors may also be inferred based on sensor data from the tracking device.
Abstract:
A method for detecting a human's steps and estimating the horizontal translation direction and scaling of the resulting motion relative to an inertial sensor is described. When a pedestrian takes a sequence of steps the displacement can be decomposed into a sequence of rotations and translations over each step. A translation is the change in the location of pedestrian's center of mass and a rotation is the change along z-axis of the pedestrian's orientation. A translation can be described by a vector and a rotation by an angle.
Abstract:
Disclosed herein are methods and systems for fusion of sensor and map data using constraint based optimization. In an embodiment, a computer-implemented method may include obtaining tracking data for a tracked subject, the tracking data including data from a dead reckoning sensor; obtaining constraint data for the tracked subject; and using a convex optimization method based on the tracking data and the constraint data to obtain a navigation solution. The navigation solution may be a path and the method may further include propagating the constraint data by a motion model to produce error bounds that continue to constrain the path over time. The propagation of the constraint data may be limited by other sensor data and/or map structural data.
Abstract:
A method for determining an environmental pressure change affecting a pressure sensor within a portable device to determine an elevation of the portable device is disclosed. The method involves sampling pressure data from at least one stationary pressure sensor in an area surrounding a location of the device, wherein the stationary pressure sensor in not within the portable device. The sampled pressure data is then interpolated to a time interval and a difference is computed between the interpolated pressure data over each time interval to determine a differential pressure. The location of the stationary pressure sensor is determined and the differential pressure is added to a pressure map affecting data near the location. The environmental pressure change is then computed over any interval at the location and subtracted from a pressure measurement of the pressure sensor before computing an elevation of the portable device.
Abstract:
Systems, methods and instructions for creating building models of physical structures is disclosed. The building model may be a collection of floors defined by outlines containing regions that may be offset relative to a main region, and a collection of connectors. Connectors may have connection points for tracking, routing and sizing. Connectors may indicate elevation changes through georeferenced structural features. Signal elements may also be features that provide corrections when tracking. Feature descriptors are data that describes the structural configuration and signal elements enabling them to be matched to previously collected data in a database. User interface elements assist a user of a tracking device in collecting floor information, structural features and signal features and validating certain collected information based on previously known information. The height of floors may also be inferred based on sensor data from the tracking device.
Abstract:
Systems, methods and instructions for creating building models of physical structures is disclosed. The building model may be a collection of floors defined by outlines containing regions that may be offset relative to a main region, and a collection of connectors. Connectors may have connection points for tracking, routing and sizing. Connectors may indicate elevation changes through georeferenced structural features. Signal elements may also be features that provide corrections when tracking. Feature descriptors are data that describes the structural configuration and signal elements enabling them to be matched to previously collected data in a database. User interface elements assist a user of a tracking device in collecting floor information, structural features and signal features and validating certain collected information based on previously known information. The height of floors may also be inferred based on sensor data from the tracking device.
Abstract:
This disclosure provides techniques for the creation of maps of indoor spaces. In these techniques, an individual or a team with no mapping or cartography expertise can contribute to the creation of maps of buildings, campuses or cities. An indoor location system can track the location of contributors in the building. As they walk through indoor spaces, an application may automatically create a map based on data from motion sensors by both tracking the location of the contributors and also inferring building features such as hallways, stairways, and elevators based on the tracked contributors' motions as they move through a structure. With these techniques, the process of mapping buildings can be crowd sourced to a large number of contributors, making the indoor mapping process efficient and easy to scale up.
Abstract:
A method for computing a correction to a compass heading for a portable device worn or carried by a user is described. The method involves determining a heading for the device based on a compass reading, collecting data from one or more sensors, determining if the device is indoors or outdoors based on the collected data, and correcting the heading based on the determination of whether the device is indoors or outdoors.
Abstract:
A method for computing a correction to a compass heading for a portable device worn or carried by a user is described. The method involves determining a heading for the device based on a compass reading, collecting data from one or more sensors, determining if the device is indoors or outdoors based on the collected data, and correcting the heading based on the determination of whether the device is indoors or outdoors.