Radar ranging system based on true random generator and ranging method thereof

    公开(公告)号:US11914068B2

    公开(公告)日:2024-02-27

    申请号:US17471270

    申请日:2021-09-10

    CPC classification number: G01S7/35 G01S13/32 G01S13/931

    Abstract: The present disclosure relates to a radar ranging system based on a true random generator and a ranging method thereof The present disclosure adopts the following technical scheme: the system comprises a radar signal modulation and transmission unit and a radar signal receiving and processing unit, wherein the radar signal modulation and transmission unit inputs and stores a true random binary sequence generated by the true random generator in a memory, and cyclically outputs the true random binary sequence to a BPSK modulator for phase modulation. The receiving and amplifying unit receives the reflected radar signal. The down-sampling unit down samples the intermediate frequency signal generated by the mixers. The data processing unit converts the sampled analog signal into a digital signal and cross-correlates the signal with the true random binary sequence in the memory, so as to obtain the distance to the object side to be measured.

    High-speed random number generation method and device

    公开(公告)号:US11216252B2

    公开(公告)日:2022-01-04

    申请号:US16486241

    申请日:2018-11-26

    Abstract: The present disclosure provides a high-speed random number generation method and device, comprising an entropy source module and an entropy sampling module. The entropy source module is an autonomous Boolean network formed by digital logic gates, the network is formed by an XNOR gate and (N−1) XOR gates, wherein the value of N is equal to 3n (n is a positive integer), and the entropy source can generate chaotic signals having wide and flat frequency spectrum. The entropy sampling module of the present disclosure is formed by D flip flops used for sampling and quantizing the chaotic signals to generate random number sequences. The random number sequences generated by the present disclosure can pass test standards (NIST and Diehard statistic tests) of random number industry and have excellent random statistic characteristics. The random number generation method and device of the present disclosure are completely formed by the digital logic gates, the circuit structure is simple and is easy to be integrated, and without the need of a post processing algorithm or circuit required by a conventional random number generation device, the power consumption can be greatly reduced. The present disclosure can be widely applied to the fields of information security such as secure communications, key distribution, data encryption and the like.

    DEVICE AND METHOD FOR MONITORING TWO-STAGE FAULTS OF TDM-PON WITH HIGH PRECISION

    公开(公告)号:US20200374026A1

    公开(公告)日:2020-11-26

    申请号:US16880177

    申请日:2020-05-21

    Abstract: The present invention discloses a device and a method for monitoring two-stage faults of a TDM-PON with high precision. A two-stage TDM-PON system includes an OLT I, a feeder fiber II, a stage-1 1:n optical splitter III, a stage-1 branch fiber IV, a stage-2 1:n optical splitter V, a stage-2 branch fiber VI, and an optical network unit (ONU) VII. A two-stage optical network monitoring system includes a monitoring part on the OLT I side and a monitoring part on the ONU VII side, where the monitoring part on the OLT I side includes a control-end isolator-free semiconductor laser, a control-end coupler, a control-end optical coupling device, a control-end photodetector, an integrated signal acquisition and processing device, and an optical coupling device; and the monitoring part on the ONU VII side is similar to the monitoring part of the OLT I side.

    Multifunctional physically unclonable function device based on hybrid Boolean network

    公开(公告)号:US11489681B2

    公开(公告)日:2022-11-01

    申请号:US17412852

    申请日:2021-08-26

    Abstract: A physically unclonable function (PUF) device includes a hybrid Boolean network module of a ring of N number of Boolean nodes connected end to end and a sampling module, wherein the hybrid Boolean network module comprises N number of xor logic gates and corresponding N number of multiplexers, wherein a function change module is disposed between an output end of a first xor logic gate of the N number of xor logic gates and an input end of a first multiplexer of the N number of multiplexers, wherein each Boolean node is provided with four input ends and three output ends, the four input ends respectively connected to an output end of each of two juxtaposing Boolean nodes, an initial excitation signal and a control delay signal, the three output ends respectively output to an input of each of two juxtaposing Boolean nodes, and the sampling module.

    High-precision and large-dynamic-range fault monitoring device and method for WDM-PON

    公开(公告)号:US11050485B2

    公开(公告)日:2021-06-29

    申请号:US16881170

    申请日:2020-05-22

    Abstract: The present invention discloses a high-precision and large-dynamic-range fault monitoring device and method for a WDM-PON. The monitoring device includes a WDM-PON optical network system and an optical network monitoring system. The optical network system includes an OLT I, a feeder fiber II, a 1×n AWG III, a branch fiber IV, and an optical network unit V The optical network monitoring system includes an FP laser, a coupler, an optical coupling device, a photodetector, a signal acquisition and processing device, and an optical feedback device, where the FP laser is connected to the coupler; a large-coupling-ratio output end of the coupler is connected to an input end of the optical coupling device, and a small-coupling-ratio output end of the coupler is connected to an input end of the photodetector; the optical coupling device is installed on the feeder fiber II.

    Ultra-wideband white noise source

    公开(公告)号:US11474412B2

    公开(公告)日:2022-10-18

    申请号:US17432425

    申请日:2020-04-24

    Abstract: Disclosed by the present invention is an ultra-wideband white noise source based on a slicing super-continuum spectrum. The entropy source used is a super-continuum spectrum photon entropy source having a coverage range of several hundreds of nm, white noise can thus be generated in a wide frequency range, thereby effectively avoiding the bandwidth bottleneck of an electronic device. By separately adjusting the filter centers of two optical filters, the center frequency for generating the white noise can be adjusted so as to get adapted to different working situations. High bandwidth white noise can be generated by simply filtering the super-continuum spectrum and performing photoelectric conversion, and in comparison with the previous solutions, the solution of the present invention is simpler and can be easily implemented.

    HIGH-PRECISION TEMPERATURE DEMODULATION METHOD ORIENTED TOWARD DISTRIBUTED FIBER RAMAN SENSOR

    公开(公告)号:US20210270682A1

    公开(公告)日:2021-09-02

    申请号:US17252995

    申请日:2019-05-05

    Abstract: A temperature demodulation method oriented toward a distributed fiber Raman temperature sensing system, the method comprising the following steps: step 1 of constructing a high-precision temperature detection device oriented towards a distributed fiber Raman sensing system; step 2 of performing signal processing with respect to Stokes light and anti-Stokes light at a calibration stage; step 3 of performing signal processing with respect to Stokes light and the anti-Stokes light at a measurement stage; and step 4 of obtaining a high-precision temperature demodulation technique oriented toward the distributed fiber Raman sensor. The method is used to effectively resolve the issue of low temperature measuring accuracy caused by Rayleigh crosstalk in existing distributed fiber Raman temperature measurement systems, and temperature measurement accuracy thereof is expected to fall within ±0.1° C. The method is applicable to distributed fiber Raman temperature measurement systems.

    High-precision temperature demodulation method oriented toward distributed fiber Raman sensor

    公开(公告)号:US11808639B2

    公开(公告)日:2023-11-07

    申请号:US17252995

    申请日:2019-05-05

    CPC classification number: G01K11/324

    Abstract: A temperature demodulation method oriented toward a distributed fiber Raman temperature sensing system, the method comprising the following steps: step 1 of constructing a high-precision temperature detection device oriented towards a distributed fiber Raman sensing system; step 2 of performing signal processing with respect to Stokes light and anti-Stokes light at a calibration stage; step 3 of performing signal processing with respect to Stokes light and the anti-Stokes light at a measurement stage; and step 4 of obtaining a high-precision temperature demodulation technique oriented toward the distributed fiber Raman sensor. The method is used to effectively resolve the issue of low temperature measuring accuracy caused by Rayleigh crosstalk in existing distributed fiber Raman temperature measurement systems, and temperature measurement accuracy thereof is expected to fall within ±0.1° C. The method is applicable to distributed fiber Raman temperature measurement systems.

Patent Agency Ranking