摘要:
A closed circuit (13) is formed such that the upper ends of preinstalled refrigerant pipes (2A, 2B) in a refrigerant circuit are connected to each other through an upper connecting passage (11) and the lower ends thereof are connected to each other through a lower connecting passage (12). A refrigerant is charged into the closed circuit (13). In a separator (50) of the lower connecting passage (12), a separating heat exchange coil (52) heats the liquid refrigerant to evaporate it, and a filter (53) captures foreign substance from the gas refrigerant. Two conveying heat exchangers (7A, 7B) of the lower connecting passage (12) alternately carry out a repetitive cooling operation of cooling the gas refrigerant, having been changed in phase by the separator (50), to change the phase from gas to liquid and a repetitive pressurizing operation of pressurizing the liquid refrigerant by heating the refrigerant to the extent kept in the liquid phase, respectively, thereby applying a running force to the refrigerant. The refrigerant cleans the preinstalled refrigerant pipes (2A, 2B) in a manner of circulating in the closed circuit (13) from the conveying heat exchangers (7A, 7B).
摘要:
This refrigerant recovery system is provided with recovery piping 2, heat exchangers 25, 26 and check valves 30, 31, 37, 38. A refrigerant within the recovery piping 2 is heated and cooled by the heat exchangers 25, 26, so that a fluid power is imparted to the refrigerant. This fluid power is regulated to one direction by the check valves 30, 31, 37, 38, by which the refrigerant is transferred in one way within the recovery piping 2. Thus, the refrigerant can be recovered from a gas line 3 and a liquid line 5 with high efficiency. Also, a degassing circuit 306 makes the gas refrigerant within the recovery container 71 merged with the refrigerant within the recovery piping 2 cooled by the heat exchanger 25 or 26, by which the recovery container 71 can be degassed. Also, the refrigerant can be recovered to the recovery container 71 smoothly, so that the refrigerant can be recovered efficiently.
摘要:
A piping cleaning system switches over a four-way switching valve 43 of a heat pump circuit 200 so that two transfer heat exchangers 25, 26 are operated alternately as a cooling device and a heating device, by which a cleaning refrigerant in a cleaning circuit 2 is circulated through a gas line 3 and a liquid line 5. During this cleaning operation with the cleaning refrigerant circulated, when the cleaning refrigerant runs short in amount, a solenoid valve SV3 is opened so that cleaning refrigerant of the refrigerant cylinder 71 is resupplied through a refrigerant resupply line 72 to either one of the transfer heat exchangers 25 or 26 that is cooling. On the other hand, when the cleaning refrigerant is excessive, a solenoid valve SV4 is opened so that the cleaning refrigerant is returned to the refrigerant cylinder 71 through a refrigerant bleed line 73. Thus, the amount of cleaning refrigerant can be maintained at an appropriate level.
摘要:
In the case where a 100 percent heat recovery operation mode is performed without using an outdoor heat exchanger in a refrigeration apparatus which is provided with utilization-side heat exchangers of a plurality of piping systems and in which liquid-side communication lines are arranged into a single line, a backflow prevention mechanism (37) for preventing liquid refrigerant exiting an indoor heat exchanger (41) from flowing in a direction other than in the direction of cold storage and freeze storage heat exchangers (45, 51) is disposed for providing stable flow of refrigeration through the circuit even when the temperature of outside air is low, whereby the capability to provide refrigeration is prevented from degrading.
摘要:
In a refrigerant circuit (20), a refrigerator circuit (110) and a freezing circuit (30) are connected in parallel to an outdoor circuit (40). In the freezing circuit (30), a freezer circuit (130) and a booster circuit (140) are connected in series. A booster compressor (141) and a four-way switch valve (142) are provided in the booster circuit (140). During the time when a freezer heat exchanger (131) performs cooling operation for cooling the inside air, refrigerant evaporated in the freezer heat exchanger (131) is compressed in the booster compressor (141), and then, is sucked into a variable capacitance compressor (41). On the other hand, during defrosting of the freezer heat exchanger (131), the refrigerant evaporated in a refrigerator heat exchanger (111) is compressed in the booster compressor (141), and then, is supplied to the freezer heat exchanger (131). The refrigerant condensed in the freezer heat exchanger (131) during the defrosting operation is sent back to the refrigerator heat exchanger (111).
摘要:
A refrigeration apparatus (1) is provided with a refrigerant circuit (1E) along which are connected a compressor (2), an outdoor heat exchanger (4), an expansion mechanism, an indoor heat exchanger (41) for providing room air conditioning, and a cooling heat exchanger (45, 51) for providing storage compartment cooling. The refrigerant circuit (1E) includes a discharge side three way switch valve (101) for varying the flow rate of a portion of the refrigerant which is discharged out of the compressor (2) and then distributed to the indoor heat exchanger (41) and the outdoor heat exchanger (4) during a heat recovery operation mode in which the indoor heat exchanger (41) and the outdoor heat exchanger (4) operate as condensers. As a result of such arrangement, even when the amount of heat obtained in the cooling heat exchanger (45, 51) exceeds the amount of heat required in the indoor heat exchanger (41), surplus heat is discharged without excessive decrease in the discharge pressure of the compressor (2).
摘要:
In the case where a 100 percent heat recovery operation mode is performed without using an outdoor heat exchanger in a refrigeration apparatus which is provided with utilization-side heat exchangers of a plurality of piping systems and in which liquid-side communication lines are arranged into a single line, a backflow prevention mechanism (37) for preventing liquid refrigerant exiting an indoor heat exchanger (41) from flowing in a direction other than in the direction of cold storage and freeze storage heat exchangers (45, 51) is disposed for providing stable flow of refrigeration through the circuit even when the temperature of outside air is low, whereby the capability to provide refrigeration is prevented from degrading.
摘要:
In a refrigerating apparatus (1) having application-side heat exchangers (41, 45, 51) for a plurality of systems for air-conditioning, for cold-storage/freezing and the like and a four-way switch valve (3C) and a plurality of check valves (7) on suction sides of compression mechanisms (2D, 2E) and formed from three compressors (2A, 2B, 2C) to allow the operation states to be switched, the number of compressors (2A, 2B, 2C) used at air-conditioning side and cold-storage/freezing side is limited to two at maximum, thereby achieving a simple circuit configuration in which the number of the check valves (7) to be provided in the suction sides of the compression mechanisms (2D, 2E) is reduced to one or two, suppressing the occurrence of chattering noise in check valves (7) and, also, preventing an ability from reducing due to a suction-side pressure loss.
摘要:
A refrigeration system includes a chiller unit and a freezer unit. The freezer unit is provided with a freezing compressor for compressing a refrigerant in a total of two stages together with a compressor in an outdoor unit. The freezing compressor is formed by an inverter compressor. An oil separator is disposed on the discharge pipe of the freezing compressor. On the inlet pipe of the freezing compressor, a heat exchanger is provided for cooling an inverter with an refrigeration oil separated by the oil separator and a suction refrigerant.
摘要:
A refrigerant circuit (20) includes a low stage compressor (101, 102, 121, 122), a high stage compressor (41, 42, 43), an outdoor heat exchanger (44) and a utilization side heat exchanger (83, 93). During a defrosting operation of the refrigeration system (10), the high stage compressor (41, 42, 43) is driven. Refrigerant discharged from the high stage compressor (41, 42, 43) is pumped into the utilization side heat exchanger (83, 93) to heat frost on it from its inside. Thereafter, the refrigerant evaporates in the outdoor heat exchanger (44), is then compressed by the high stage compressor (41, 42, 43) and is sent again to the utilization side heat exchanger (83, 93).