摘要:
Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron carbide material which may contain one or both of a boron donor material and a carbon donor material. The reactive infiltration typically results in a composite comprising a boron-containing compound, a carbon-containing compound and residual metal, if desired. The mass to be infiltrated may contain one or more inert filters admixed with the boron carbide material, boron-containing compound and/or carbon-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal, ratios of one ceramic to another and porosity.
摘要:
Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron carbide material which may contain one or both of a boron donor material and a carbon donor material. The reactive infiltration typically results in a composite comprising a boron-containing compound, a carbon-containing compound and residual metal, if desired. The mass to be infiltrated may contain one or more inert fillers admixed with the boron carbide material, boron-containing compound and/or carbon-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal, ratios of one ceramic to another and porosity.
摘要:
Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron carbide material which may contain one or both of a boron donor material and a carbon donor material. The reactive infiltration typically results in a composite comprising a boron-containing compound, a carbon-containing compound and residual metal, if desired. The mass to be infiltrated may contain one or more inert fillers admixed with the boron carbide material, boron-containing compound and/or carbon-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal, ratios of one ceramic to another and porosity.
摘要:
Self-supporting bodies are produced by reactive infiltration of a parent metal into a boron carbide material which may contain one or both of a boron donor material and a carbon donor material. The reactive infiltration typically results in a composite comprising a boron-containing compound, a carbon-containing compound and residual metal, if desired. The mass to be infiltrated may contain one or more inert fillers admixed with the boron carbide material, boron-containing compound and/or carbon-containing compound. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal, ratios of one ceramic to another and porosity.
摘要:
Self-supporting bodies are produced by reactive infiltration of a parent metal into boron carbide typically resulting in a composite comprising a boron-containing compound and metal. The mass to be infiltrated may contain one or more inert fillers admixed with the boron carbide, or at least one carbon donor material, to produce a composite by reactive infiltration, which composite comprises a matrix of metal and boron-containing compound embedding the filler. In one embodiment of the invention, a parent metal is reactively infiltrated into a mass comprising a boron carbide material mixed with a carbon-containing compound. In this embodiment, a self-supporting composite is formed typically comprising a boron-containing compound, a carbon-containing compound, and metal. The relative amounts of reactants and process conditions may be altered or controlled to yield a body containing varying volume percents of ceramic, metal and/or porosity. The mass to be infiltrated can be contained within a refractory vessel having a venting means included therein.
摘要:
This invention relates to a method for producing a self-supporting body comprising the steps of:(a) forming a permeable mass comprising at least one solid-phase oxidant selected from the group consisting of the halogens, sulphur and its compounds, metals, metal oxides other than the silicates, and metal nitrides other than those of boron and silicon;(b) orienting said permeable mass and a source of said parent metal relative to each other so that formation of said oxidation reaction product will occur into said permeable mass;(c) heating said source of parent metal to a temperature above the melting point of said parent metal but below the melting point of said oxidation reaction product to form a body of molten parent metal;(d) reacting said body of molten parent metal with said at least one solid-phase oxidant at said temperature to permit said oxidant at said temperature to permit said oxidation reaction product to form; and(e) maintaining at least a portion of said at least one oxidation reaction product in contact with and between said molten parent metal and said solid-phase oxidant at said temperature to progressively draw molten parent metal through said oxidation reaction product towards said solid-phase oxidant to permit fresh oxidation reaction product to continue to form at an interface between said solid-phase oxidant and previously formed oxidation reaction product that has infiltrated said permeable mass.
摘要:
This invention relates generally to a novel method of manufacturing a composite body. More particularly, the present invention relates to a method for modifying the resultant properties of a composite body, by, for example, minimizing the amount of porosity present in the composite body. Moreover, additives, whether used alone or in combination, (1) can be admixed with the permeable mass, (2) can be mixed or alloyed with the parent metal, (3) can be placed at an interface between the parent metal and the preform or mass of filler material, (4) or any combination of the aforementioned methods, to modify properties of the resultant composite body. Particularly, additives such as VC, NbC, WC, W.sub.2 B.sub.5, TaC, ZrC, ZrB.sub.2, SiB.sub.6, SiC, MgO, Al.sub.2 O.sub.3, ZrO.sub.2, CeO.sub.2, Y.sub.2 O.sub.3, La.sub.2 O.sub.3, MgAl.sub.2 O.sub.4, HfO.sub.2, ZrSiO.sub.4, Yb.sub.2 O.sub.3 and Mo.sub.2 B.sub.5 can be combined with the permeable mass in an amount of about 5-50 percent by weight, prior to reactively infiltrating the permeable mass. Moreover, an additive may also include substantially pure elemental metals (e.g., Nb, Ti, Hf, V, Ta, Cr, Mo, Al, Cr, Si, Co and W) which may be provided by any of the methods discussed above herein.
摘要:
This invention relates generally to a novel method of manufacturing a composite body. More particularly, the present invention relates to a method for modifying the resultant properties of a composite body, by, for example, minimizing the amount of porosity present in the composite body. Additives such as TaC, ZrC, ZrB.sub.2, VC, NbC, WC, W.sub.2 B.sub.5 and/or MoO.sub.2 B.sub.5 can be combined with a boron carbide material which is thereafter reactively infiltrated by a parent metal. The composite body comprises one or more boron-containing compounds (e.g., a boride or a boride and a carbide) which is made by the reactive infiltration of molten parent metal into the boron carbide mass. Particular emphasis is placed upon modifying the properties of a ZrB.sub.2 -ZrC-Zr composite body. However, the methods disclosed in the application are believed to be generic to a number of parent metals and preform materials.
摘要:
A net shaped ceramic-reinforced aluminum matrix composite is provided by forming a permeable mass of ceramic material with a defined surface boundary having a barrier, and contacting a molten aluminum-magnesium alloy with the permeable mass of ceramic material in the presence of a gas comprising from about 10 to 100% nitrogen, by volume, balance nonoxidizing gas, e.g. hydrogen or argon. Under these conditions, the molten alloy spontaneously infiltrates the ceramic mass under normal atmospheric pressures until it reaches the barrier. A solid body of the alloy can be placed adjacent to a permeable bedding of ceramic material having a barrier, and brought to the molten state, preferably to at least about 700.degree. C., in order to form the net shape aluminum matrix composite by spontaneous infiltration. In addition to magnesium, auxiliary alloying elements may be employed with aluminum. The resulting composite products may contain a discontinuous aluminum nitride phase in the aluminum matrix.
摘要:
A method of making self-supporting ceramic composite structures having filler embedded therein includes infiltrating a permeable mass of filler with polycrystalline material comprising an oxidation reaction product obtained by oxidation of a parent metal such as aluminum and optionally, containing therein non-oxidized constituents of the parent metal. The structure is formed by placing a parent metal adjacent to a permeable filler and heating the assembly to melt the parent metal and provide a molten body of parent metal which is contacted with a suitable vapor-phase oxidant. Within a certain temperature region and optionally, aided by one or more dopants in or on the parent metal, molten parent metal will migrate through previously formed oxidation reaction product into contact with the oxidant, causing the oxidation reaction product to grow so as to embed the adjacent filler and provide the composite structure. In a preferred embodiment, a parent metal comprising aluminum is oxidized by a vapor-phase oxidant comprising nitrogen to form a ceramic matrix comprising an aluminum nitride oxidation reaction product. In a particularly preferred embodiment, one or more protective coatings are applied to the filler prior to formation of the aluminum nitride oxidation reaction product matrix.