摘要:
Disclosed are embodiments of a system and a method that allow for wireless and dynamic intra-process (i.e., during and/or between process steps) measurements of integrated circuit parameters. The embodiments incorporate the use of a passive circuit, such as an inductor-capacitor-resistor (LCR) circuit resonator, that has a predetermined sensitivity to process variations in one or more physical or electrical integrated circuit parameters. The passive circuit can be wirelessly interrogated between and/or process steps. Then, the actual behavior exhibited by the passive circuit in response to the interrogation is compared to the expected behavior of an optimal circuit in the absence of process variations in order to determine the one or more parameters. Also disclosed is an embodiment of an exemplary passive circuit that can be used to implement the disclosed system and method embodiments.
摘要:
Disclosed are embodiments of a system and a method that allow for wireless and dynamic intra-process (i.e., during and/or between process steps) measurements of integrated circuit parameters. The embodiments incorporate the use of a passive circuit, such as an inductor-capacitor-resistor (LCR) circuit resonator, that has a predetermined sensitivity to process variations in one or more physical or electrical integrated circuit parameters. The passive circuit can be wirelessly interrogated between and/or process steps. Then, the actual behavior exhibited by the passive circuit in response to the interrogation is compared to the expected behavior of an optimal circuit in the absence of process variations in order to determine the one or more parameters. Also disclosed is an embodiment of an exemplary passive circuit that can be used to implement the disclosed system and method embodiments.
摘要:
Disclosed are embodiments of a pixel imaging circuit that incorporates a standard photodiode. However, the imaging circuit is modified with a feedback loop to provide a first photo response over a first portion of the light sensing range (e.g., at higher light intensity range) and a second reduced-sensitivity photo response over a second portion of the light sensing range (i.e., at a lower light intensity range), thereby extending the circuits dynamic range of coverage. Also disclosed are embodiments of an associated imaging method and a design structure that is embodied in a machine readable medium and used in the imaging circuit design process.
摘要:
Disclosed are embodiments of a pixel imaging circuit that incorporates a standard photodiode. However, the imaging circuit is modified with a feedback loop to provide a first photo response over a first portion of the light sensing range (e.g., at higher light intensity range) and a second reduced-sensitivity photo response over a second portion of the light sensing range (i.e., at a lower light intensity range), thereby extending the circuits dynamic range of coverage. Also disclosed are embodiments of an associated imaging method and a design structure that is embodied in a machine readable medium and used in the imaging circuit design process.
摘要:
High resolution gray scale graphical images are formed in a semiconductor substrate by the use of two or more levels of indicia having a plurality of image segments and having a continuous conductive line formed in the surface of the substrate, each image segment includes a portion of said continuous conductive line and a contrasting material providing pixels in which the width of the line within a segment varies in relationship to gray scale levels in the graphic image to be formed. Providing a graphic image to be converted; converting the graphic image to a gray level, two dimensional bit mapped converting the bit mapped image into a set of parallel lines of varying width; each line comprising a single continuous segment in which the width varies based on the density of the gray level required to form the gray level image; and transferring the set of lines to a pattern of conductor/insulator lines on a substrate.
摘要:
Disclosed is a method and structure that controls an output driver by generating an output data path clock signal from a system clock signal and timing the programmable impedance of the output driver according to the output data path clock signal. The method/structure controls the timing of the line driver circuits according to the output data path clock signal. By timing the programmable impedance according to the output data path clock signal, the timing of delivery of an impedance control signal is coordinated with the timing of delivery of data. The method/structure also performs impedance updates on the output driver more frequently during initialization cycles than in cycles that occur after the initialization cycles expire using at least two differently timed clock dividers and a counter.