Abstract:
Featured is a method for reducing frequency of taking background spectra in FTIR or FTIR-ATR spectroscopy. Such a method includes determining if there is a pre-existing reference spectrum available and if such a reference spectrum is available, acquiring a present reference scan before acquiring a sample scan. The method also includes comparing the present reference scan with the pre-existing reference spectrum to determine if there is one or more non-conformities therebetween and if there is/are one or more nonconformities, determining if the one or more non-conformities are resolvable or not. If the one or more non-conformities are resolvable; resolve each non-conformity in a determined manner and thereafter acquiring a scan of the sample, and if the non-conformities are not resolvable, then acquiring a new reference sample and thereafter acquiring a scan of the sample.
Abstract:
A method of detecting an explosive material, and an analyzer and computer program products that may perform such methods. A method may include illuminating at least a portion of the material with light, and monitoring the temperature of the illuminated portion. T power or location of the illuminating light may be altered in response to the monitored temperature. Raman spectral data are produced in response to Raman radiation emitted from the portion in response to the light. The composition of the material may be analyzed based on the Raman spectral data or generating an indication to an operator that the material cannot be safely analyzed.
Abstract:
In an embodiment, an apparatus may include a light source, a beam manipulator, an optical component, an analyzer, and a detector. The light source may generate an incident light at a first frequency. The beam manipulator may include one or more polyhedron-shaped prisms that may deflect the incident light for focus at a plurality of points on a sample. The optical component may collect the deflected incident light, focus the collected deflected incident light at the plurality of points on the sample, and collect scattered light from the sample. The scattered light may include elastic scattered light and/or inelastic scattered light. The inelastic scattered light may have a second frequency that is shifted up or down from the first frequency. The detector may detect the inelastic scattered light and the analyzer may identify a substance contained in the sample based on the detected inelastic scattered light.