摘要:
The invention relates to a luminescent material for an light emitting device comprising an (YGd)-containing nanoparticle material linked to at least one organic ligand molecule
摘要:
A phosphor converted light emitting device includes a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region, the light emitting layer being configured to emit light having a first peak wavelength; a first phosphor configured to emit light having a second peak wavelength; and a second phosphor configured to emit light having a third peak wavelength. The second phosphor is an Eu3+-activated phosphor, configured such that in the excitation spectrum at 298K and 1.013 bar, a maximum intensity in a wavelength range between 460 nm and 470 nm is at least 5% of a maximum intensity in a wavelength range between 220 nm to 320 nm.
摘要:
A dielectric barrier Xe discharge lamp include discharge vessel with a gas filling containing Xe or a Xe/Ne mixture and a luminescent layer of a UV-B phosphor emitting in the UV-B range 280 to 320 nm. The luminescent layer includes a Gd3+ activated phosphor according to at least one the formulas of (Y1-x-yGdxSy)Al3(BO3)4, (La1-x-yGdxSy)Al3(BO3)4, (La1-x-yGdxSy)B3O6, (Y1-x-y-zGdxSyLuz)PO4, (Y1-x-y-zGdxSyLuz)BO3, (Y1-x-y-zGdxSyLuz)3Al5O12, Me(Y1-x-yGdxSy)F4 (Me=Li, Na, K; S═Bi, Nd, Pr; 0.0
摘要:
The invention is concerned with a discharge lamp provided with a gas discharge vessel comprising a gas filling with a discharge-maintaining composition, at least part of a wall of the discharge vessel being provided with a luminescent material comprising as a first UV-phosphor a lanthanide-activated lanthanum magnesium aluminate of formula Lai_xMgAlπOic>:Lnx, wherein the lanthanide Ln is selected from the group of Ce(III), Pr(III), Nd(III) and Gd(III), and 0.001 :Lnx, wherein the lanthanide Ln is selected from the group of Ce(III), Pr(III), Nd(III) and Gd(III), and 0.001
摘要:
This invention relates to a dielectric barrier Xe discharge lamp comprising an UV-B phosphor. The lamp consists of a gas-tight, discharge vessel with a gas filling containing Xe or a Xe/Ne mixture and is provided with a luminescent layer, which comprises at least one luminescent material emitting in the UV-B range (280 to 320 nm). The luminescent layer comprises a Gd3+ activated phosphor according to the formulas McPO4:Gd, Lal1—XAl3(BO3)4:Gdx, and La1—xB3O6:Gdx which is eventually sensitised by Bi3+, Pr3+ or Nd3+ The advantages of such an UV-B emitting discharge lamp over fluorescent lamps based on a Hg low-pressure discharge are a high power density, 10 instant light, long lifetime, a spectral power distribution which is only determined by the phosphor blend, and an arbitrary burner design.
摘要:
The invention relates to illumination devices (1) with a light source (2) and an afterglow surface (4) comprising a phosphor. The phosphor has an afterglow emission peak at a temperature above about 100° C. and/or has the formula (Sr1-zMz)4Al14O25:Eu, Ln, Xk with M ε {Ca, Ba, Mg}, Ln ε {Dy, Nd}, X ε {Yb, Tm, Sm}.
摘要:
A gas discharge lamp with at least one capacitive coupling structure (2, 3) is described, which lamp has the particular characteristic that the coupling structure (2, 3) comprises a ceramic material which comprises pure BaTiO3. In particular an additional doping of at least part of the BaTiO3 with barium leads to a material whose Curie temperature and saturation polarization are substantially higher and whose coercitive field strength is substantially smaller, so that a gas discharge lamp with a coupling structure manufactured from this material can be operated at substantially higher temperatures and at a lower operating voltage. Various dopings of the BaTiO3 with titanium, manganese, and lead are furthermore described.
摘要:
A phosphor converted light emitting device includes a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region, the light emitting layer being configured to emit light having a first peak wavelength; a first phosphor configured to emit light having a second peak wavelength; and a second phosphor configured to emit light having a third peak wavelength. The second phosphor is an Eu3+-activated phosphor, configured such that in the excitation spectrum at 298K and 1.013 bar, a maximum intensity in a wavelength range between 460 nm and 470 nm is at least 5% of a maximum intensity in a wavelength range between 220 nm to 320 nm.
摘要:
The invention relates to a display device comprising a first electrode (2) and a second electrode (6), and an optical layer (3) arranged between the electrodes (2, 6), which optical layer (3) emits light under the influence of an electric field applied between said electrodes (2, 6), and comprising a varistor layer (5) which is situated at least in the area of the pixels of the display device.
摘要:
A capacitor having a ceramic dielectric and at least two electrodes, the ceramic dielectric being predominantly composed of a dielectric, ceramic composition having a main component of BaTiO.sub.3 and/or �Ba.sub.1-y Sr.sub.y !Ti.sub.x O.sub.31 z, wherein 0.95.ltoreq.x.ltoreq.0.995, 0.ltoreq.y.ltoreq.0.04, z=2(1-x), and having at least an additive of the group formed by XMnO.sub.3, X.sub.2 MoO.sub.6, X.sub.2 WO.sub.6, X.sub.2 SiO.sub.5 +Mn.sub.2 SiO.sub.4 and Li.sub.2 SiO.sub.3 +Mn.sub.2 SiO.sub.4, and at least an additive of the group formed by Li.sub.2 SiO.sub.3, SiO.sub.2 and a mixture of 6 mol % Li.sub.2 O, 13 mol % BaO, 13 mol % SrO, 13 mol % MgO and 55 mol % SiO.sub.2, which is calcined at 800.degree. C., and, if necessary, an additive of the group formed by XInO.sub.3, XGaO.sub.3 and XAlO.sub.3, wherein X is one or more elements of the group formed by Y, Dy and Er, is characterized by a flat .DELTA.C/.DELTA.t curve and a stable dielectric behavior on exposure to temperature and voltage influences.