摘要:
A phosphor converted light emitting device includes a semiconductor structure comprising a light emitting layer disposed between an n-type region and a p-type region, the light emitting layer being configured to emit light having a first peak wavelength; a first phosphor configured to emit light having a second peak wavelength; and a second phosphor configured to emit light having a third peak wavelength. The second phosphor is an Eu3+-activated phosphor, configured such that in the excitation spectrum at 298K and 1.013 bar, a maximum intensity in a wavelength range between 460 nm and 470 nm is at least 5% of a maximum intensity in a wavelength range between 220 nm to 320 nm.
摘要:
A semiconductor light emitting device is combined with a wavelength converting material. The semiconductor light emitting device is configured to emit first light of a first peak wavelength. The wavelength converting material is configured to absorb at least a portion of the first light and emit second light of a second peak wavelength. In some embodiments, the first wavelength converting material is (Ba1-xSr)2-y-0.5zSi5N8-zOz:Euy2+ where 0.2
摘要翻译:半导体发光器件与波长转换材料组合。 半导体发光器件被配置为发射第一峰值波长的第一光。 波长转换材料被配置为吸收第一光的至少一部分并发射第二峰值波长的第二光。 在一些实施方案中,第一波长转换材料是(Ba 1-x Sr)2-y-0.5z Si 5 N 其中0.2 5-a u> 其中M = Sr,Ba,Na, 钙; A = Al,B,Ga,Sc; 和0.01
摘要:
Light-emitting devices are disclosed that comprise a light source emitting first light, a first material substantially transparent to and located to receive at least a portion of the first light, and particles of a second material dispersed in the first material. The second material has an index of refraction greater than an index of refraction of the first material at a wavelength of the first light. The particles of the second material have diameters less than about this wavelength. Particles of a third material may also be dispersed in the first material.
摘要:
The invention concerns an illumination system for generation of colored, especially amber or red light, comprising a radiation source and a fluorescent material comprising at least one phosphor capable of absorbing a part of light emitted by the radiation source and emitting light of wavelength different from that of the absorbed light; wherein said at least one phosphor is a amber to red emitting a rare earth metal-activated oxonitridoalumosilicate of general formula (Ca1−x−y−zSrxBayMgz)1−n(Al1−a+bBa)Si1−bN3−bOb:REn, wherein 0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦a≦1, 0
摘要:
The invention concerns an illumination system for generation of colored, especially amber or red light, comprising a radiation source and a fluorescent material comprising at least one phosphor capable of absorbing a part of light emitted by the radiation source and emitting light of wavelength different from that of the absorbed light; wherein said at least one phosphor is a amber to red emitting a rare earth metal-activated oxonitridoalumosilicate of general formula (Ca1−x−y−zSrxBayMgz)1−n(Al1−a+bBa)Si1−bN3−bOb:Ren, wherein 0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦a≦1, 0
摘要:
Overmolded lenses and certain fabrication techniques are described for LED structures. In one embodiment, thin YAG phosphor plates are formed and affixed over blue LEDs mounted on a submount wafer. A clear lens is then molded over each LED structure during a single molding process. The LEDs are then separated from the wafer. The molded lens may include red phosphor to generate a warmer white light. In another embodiment, the phosphor plates are first temporarily mounted on a backplate, and a lens containing a red phosphor is molded over the phosphor plates. The plates with overmolded lenses are removed from the backplate and affixed to the top of an energizing LED. A clear lens is then molded over each LED structure. The shape of the molded phosphor-loaded lenses may be designed to improve the color vs. angle uniformity. Multiple dies may be encapsulated by a single lens. In another embodiment, a prefabricated collimating lens is glued to the flat top of an overmolded lens.
摘要:
Overmolded lenses and certain fabrication techniques are described for LED structures. In one embodiment, thin YAG phosphor plates are formed and affixed over blue LEDs mounted on a submount wafer. A clear lens is then molded over each LED structure during a single molding process. The LEDs are then separated from the wafer. The molded lens may include red phosphor to generate a warmer white light. In another embodiment, the phosphor plates are first temporarily mounted on a backplate, and a lens containing a red phosphor is molded over the phosphor plates. The plates with overmolded lenses are removed from the backplate and affixed to the top of an energizing LED. A clear lens is then molded over each LED structure. The shape of the molded phosphor-loaded lenses may be designed to improve the color vs. angle uniformity. Multiple dies may be encapsulated by a single lens. In another embodiment, a prefabricated collimating lens is glued to the flat top of an overmolded lens.
摘要:
A semiconductor light emitting device is provided with a separately fabricated wavelength converting element. The wavelength converting element, of e.g., phosphor and glass, is produced in a sheet that is separated into individual wavelength converting elements, which are bonded to light emitting devices. The wavelength converting elements may be grouped and stored according to their wavelength converting properties. The wavelength converting elements may be selectively matched with a semiconductor light emitting device, to produce a desired mixture of primary and secondary light.
摘要:
Low profile, side-emitting LEDs are described that generate white light, where all light is emitted within a relatively narrow angle generally parallel to the surface of the light-generating active layer. The LEDs enable the creation of very thin backlights for backlighting an LCD. In one embodiment, the LED emits blue light and is a flip chip with the n and p electrodes on the same side of the LED. Separately from the LED, a transparent wafer has deposited on it a red and green phosphor layer. The phosphor color temperature emission is tested, and the color temperatures vs. positions along the wafer are mapped. A reflector is formed over the transparent wafer. The transparent wafer is singulated, and the phosphor/window dice are matched with the blue LEDs to achieve a target white light color temperature. The phosphor/window is then affixed to the LED.
摘要:
The invention concerns an illumination system for generation of colored, especially amber or red light, comprising a radiation source and a fluorescent material comprising at least one phosphor capable of absorbing a part of light emitted by the radiation source and emitting light of wavelength different from that of the absorbed light; wherein said at least one phosphor is a amber to red emitting a rare earth metal-activated oxonitridoalumosilicate of general formula (Ca1−x−y−zSrxBayMgz)1−n(Al1−a+bBa)Si1−bN3−bOb:REn, wherein 0≦x≦1, 0≦y≦1, 0≦z≦1, 0≦a≦1, 0
摘要翻译:本发明涉及一种用于产生着色的,特别是琥珀色或红色光的照明系统,其包括辐射源和荧光材料,该荧光材料包括至少一种能够吸收由该辐射源发射的光的一部分的荧光体,并发射与该辐射源不同的波长 的吸收光; 其中所述至少一种荧光体是琥珀色,以红色发射通式(Ca 1-xy z Sr Sr x y y y y y y)的稀土金属 - 活化的氧杂氮杂硅氮硅酸盐, 1-n(Al 1-a + b B a a)a Si(n) 其中0≤x≤1,0≤n≤0.2,其中0≤x≤1,0< y <= 1,0 <= z <= 1,0,0 <= a <= 1,0,0