Abstract:
In a present vacuum treatment apparatus, a controller controls an auxiliary roller, a thermometer, a power source, and a temperature control mechanism, in which the controller detects a temperature of a base material wound and conveyed by a main roller, starts film deposition to form a film deposition material on the base material when the temperature of the base material is in a film deposition temperature range, adjusts, when the temperature of the base material is out of a threshold range after starting film deposition on the base material, the temperature of the main roller so that the temperature of the base material falls within the threshold range and adjusts an adhesion force between the main roller and the base material, and continues the film deposition of the film deposition material on the base material with the temperature of the base material in the film deposition temperature range.
Abstract:
A vacuum treatment apparatus including: a first wind-off roller paying out a first base material; a first wind roller winding the first base material; a main roller having an outer circumferential surface in contact with a non-film deposition surface, and winding and conveying the first base material, at least a part of the outer circumferential surface, which is uncovered with the first base material, being coated with an insulating material; a deposition source facing the outer circumferential surface of the main roller; a second wind-off roller paying out a second base material that is wound and conveyed by the main roller and covers a part of a film deposition surface of the first base material on the outer circumferential surface of the main roller; a second wind roller winding the second base material; and a power source applying a bias potential to the main roller.
Abstract:
A sputtering apparatus includes a plate-shaped regulator that is provided between a target and a substrate, has an opening corresponding to a magnetic circuit, and covers a portion not corresponding to the magnetic circuit. The regulator covers at least a surface area that is greater than or equal to a half of a surface area of the substrate. The opening has a substantially fan-shaped outline. The opening is arranged so as to substantially coincide with the magnetic circuit when viewed in a direction of a rotation axis line of the target, and the rotation axis line of the target and a rotation axis line of the substrate are arranged substantially parallel to each other.
Abstract:
A method for forming a positive electrode for a thin film lithium-ion rechargeable battery includes forming a positive electrode power collection layer, forming a first positive electrode active material layer by covering the positive electrode power collection layer with a first positive electrode active material that contains lithium cobalt oxide, forming a second positive electrode active material layer that has a thickness of 20 nm or greater and 60 nm or less by covering the first positive electrode active material layer with a second positive electrode active material that contains aluminum and lithium cobalt oxide, and heating a lamination body that includes the positive electrode power collection layer, the first positive electrode active material layer, and the second positive electrode active material layer.