Abstract:
A process for manufacturing a turbine engine component includes the steps of: providing a powder containing gamma titanium aluminide; and forming a turbine engine component from said powder using a direct metal laser sintering technique.
Abstract:
An alloy composition including a γ-TiAl alloy with a sustained temperature capability of about 1500 F. An alloy composition including a γ-TiAl alloy with an oxygen level of about 100 wppm and between about 1500-3000 appm carbon. An alloy composition including a γ-TiAl alloy with an alpha stabilizer.
Abstract:
The present disclosure provides a method of preparing superalloy metals having a crystallographic texture controlled micro structure by electron beam melting.
Abstract:
Components include a low pressure turbine having a plurality of rotor assemblies including a first gamma TiAl intermetallic blade having a maximum operating temperature over 1180° F. (638° C.). At least two of the rotor assemblies include gamma TiAl intermetallic alloy blades. In an embodiment, a method of making a turbine having a plurality of rotor assemblies includes attaching a first gamma TiAl intermetallic alloy blade to an upstream stage of the plurality of rotor assemblies.
Abstract:
Components include a low pressure turbine having a plurality of rotor assemblies including a first gamma TiAl intermetallic blade having a maximum operating temperature over 1180° F. (638° C.). At least two of the rotor assemblies include gamma TiAl intermetallic alloy blades. In an embodiment, a method of making a turbine having a plurality of rotor assemblies includes attaching a first gamma TiAl intermetallic alloy blade to an upstream stage of the plurality of rotor assemblies.
Abstract:
A process to increase ductility includes utilizing γ-TiAl alloy as a base alloy and reducing at least one interstitial of the base alloy to create an alloy compositions with extremely low interstitials (Eli).
Abstract:
A method of metallurgical processing includes, providing a workpiece that has been formed by additive manufacturing of a nickel-chromium based superalloy. The workpiece has an internal porosity and a microstructure with a columnar grain structure and delta phase. The workpiece is then hot isostatically pressed to reduce the internal porosity and to at least partially retain the columnar grain structure and the delta phase. The workpiece is then heat treated to at least partially retain the columnar grain structure and the delta phase.
Abstract:
A method of metallurgical processing includes, providing a workpiece that has been formed by additive manufacturing of a nickel-chromium based superalloy. The workpiece has an internal porosity and a microstructure with a columnar grain structure and delta phase. The workpiece is then hot isostatically pressed to reduce the internal porosity and to at least partially retain the columnar grain structure and the delta phase. The workpiece is then heat treated to at least partially retain the columnar grain structure and the delta phase.
Abstract:
A turbine exhaust case for a gas turbine engine includes a multiple of CMC turbine exhaust case struts between a CMC core nacelle aft portion and a CMC tail cone.