Abstract:
An oil tank mounting system for use on a structure of a turbine engine, includes three mounts with each mount configured to constrain the oil tank with a different number of degrees of freedom of movement. A first mount may have fix the oil tank in one degree of freedom, a second mount may fix the oil tank in two degrees of freedom, and a third mount may fix the oil tank in three degrees of freedom. This allows limited rotational and expansion movement while coupling the oil tank to the engine. The mount attachments may be embodied in rubber, with pins, or with spherical joints in a variety of configurations. Frangible pins may be used to absorb energy but still retain the oil tank in the event of a high energy event.
Abstract:
A turbine engine assembly includes a turbine engine case, a gearbox and a plurality of mounts connecting the gearbox to the case. Each of the mounts includes a linkage and a fuse joint. The linkage extends towards the case substantially in a first direction. The fuse joint is configured to substantially prevent movement between the gearbox and the case when the fuse joint is subject to loading less than a threshold, and to permit a constrained movement between the gearbox and the case when the loading is greater than the threshold. The fuse joint of a first of the mounts has a different configuration than the fuse joint of a second of the mounts.
Abstract:
A turbine engine assembly includes a turbine engine case, a gearbox and a plurality of gearbox mounts that connect the gearbox to the case. The case extends along an axis between an upstream end and a downstream end. The gearbox mounts include an axial mount that extends axially in an upstream direction from the gearbox to the case.
Abstract:
An oil tank mounting system for use on a structure of a turbine engine, includes three mounts with each mount configured to constrain the oil tank with a different number of degrees of freedom of movement. A first mount may have fix the oil tank in one degree of freedom, a second mount may fix the oil tank in two degrees of freedom, and a third mount may fix the oil tank in three degrees of freedom. This allows limited rotational and expansion movement while coupling the oil tank to the engine. The mount attachments may be embodied in rubber, with pins, or with spherical joints in a variety of configurations. Frangible pins may be used to absorb energy but still retain the oil tank in the event of a high energy event.
Abstract:
A turbine engine assembly includes a turbine engine case, a gearbox and a plurality of mounts connecting the gearbox to the case. Each of the mounts includes a linkage and a fuse joint. The linkage extends towards the case substantially in a first direction. The fuse joint is configured to substantially prevent movement between the gearbox and the case when the fuse joint is subject to loading less than a threshold, and to permit a constrained movement between the gearbox and the case when the loading is greater than the threshold. The fuse joint of a first of the mounts has a different configuration than the fuse joint of a second of the mounts.
Abstract:
The present disclosure relates to shock mounts for turbine engine components. A shock mount may be used to mount an accessory gearbox to an engine case. The shock mount may allow free thermal expansion, while providing damping and stiffness in response to vibrations. The shock mount may include a cylinder filled with fluid, and a piston telescopically moveable within the cylinder. The piston may be coupled to an orifice plate. The orifice plate may include orifices through which the fluid may flow in response to compression or extension of the shock mount. The interaction of the fluid and the orifice plate may resist rapid compression or extension of the shock mount while allowing relatively slow compression or extension of the shock mount.
Abstract:
The present disclosure relates to shock mounts for turbine engine components. A shock mount may be used to mount an accessory gearbox to an engine case. The shock mount may allow free thermal expansion, while providing damping and stiffness in response to vibrations. The shock mount may include a cylinder filled with fluid, and a piston telescopically moveable within the cylinder. The piston may be coupled to an orifice plate. The orifice plate may include orifices through which the fluid may flow in response to compression or extension of the shock mount. The interaction of the fluid and the orifice plate may resist rapid compression or extension of the shock mount while allowing relatively slow compression or extension of the shock mount.
Abstract:
An oil tank mounting system for use on a structure of a turbine engine, includes three mounts with each mount configured to constrain the oil tank with a different number of degrees of freedom of movement. A first mount may have fix the oil tank in one degree of freedom, a second mount may fix the oil tank in two degrees of freedom, and a third mount may fix the oil tank in three degrees of freedom. This allows limited rotational and expansion movement while coupling the oil tank to the engine. The mount attachments may be embodied in rubber, with pins, or with spherical joints in a variety of configurations. Frangible pins may be used to absorb energy but still retain the oil tank in the event of a high energy event.
Abstract:
An oil tank mounting system for use on a structure of a turbine engine, includes three mounts with each mount configured to constrain the oil tank with a different number of degrees of freedom of movement. A first mount may have fix the oil tank in one degree of freedom, a second mount may fix the oil tank in two degrees of freedom, and a third mount may fix the oil tank in three degrees of freedom. This allows limited rotational and expansion movement while coupling the oil tank to the engine. The mount attachments may be embodied in rubber, with pins, or with spherical joints in a variety of configurations. Frangible pins may be used to absorb energy but still retain the oil tank in the event of a high energy event.
Abstract:
A turbine engine assembly includes a turbine engine case, a gearbox and a plurality of gearbox mounts that connect the gearbox to the case. The case extends along an axis between an upstream end and a downstream end. The gearbox mounts include an axial mount that extends axially in an upstream direction from the gearbox to the case.