Calibration concentration selection method for gas sensor array

    公开(公告)号:US20240102979A1

    公开(公告)日:2024-03-28

    申请号:US18533743

    申请日:2023-12-08

    CPC classification number: G01N33/0006

    Abstract: A calibration concentration selection method includes steps of: using a gas sensor array to obtain a concentration variation sequence and a response variation sequence of the gas mixture; constructing and training an AE-BP model; constructing VAE and identically distributing the response variation sequence; inputting the identically distributed response variation sequence into the trained AE-BP model to output a predicted concentration variation sequence; and then normalizing the predicted concentration variation sequence to generate a target concentration variation sequence; sorting a target concentration variation sequence and calculating a response gradient sequence; processing the response gradient sequence for obtaining a corresponding smoothed gradient sequence; if the spike is greater than a preset hyperparameter, finding a large gradient concentration interval; and selecting concentration test points by random uniform sampling according to weights; and selecting concentration test points from all other concentration intervals in the smoothed gradient sequence by random uniform sampling.

    Three-layer self-healing flexible strain sensor and preparation method thereof

    公开(公告)号:US10816418B2

    公开(公告)日:2020-10-27

    申请号:US16036612

    申请日:2018-07-16

    Abstract: A three-layer self-healing flexible strain sensor includes: a self-healing sensitive layer, wherein a self-healing encapsulating layer is respectively placed on an upper surface and a lower surface of the self-healing sensitive layer. The self-healing sensitive layer comprises a doped carbon material or a conductive composite. The three self-healing layers of the self-healing strain sensor can quickly repair the internal and external damage caused by the layered structure in a short period of time after the external damage, and does not require external stimulation. The three-layer self-healing structure strain sensor is simple in preparation without using a repair agent, which can achieve rapid self-repair at the room temperature, and can be repeatedly repair. The three-layer self-healing structure increases the strength and modulus of the strain sensor as well as increases the ability of the strain sensor to resist external damage.

    Preparation method of three-layer self-healing flexible strain sensor

    公开(公告)号:US20210041313A1

    公开(公告)日:2021-02-11

    申请号:US17006782

    申请日:2020-08-28

    Abstract: A preparation method of a three-layer self-healing flexible strain sensor includes steps of: preparing an encapsulating layer composite, so as to obtain a concentrated solution; preparing a strain sensitive layer composite, so as to obtain a thick liquid; dropping the thick liquid on a glass substrate, and statically curing at a room temperature; dropping the concentrated solution on a cured film obtained in the S3, and statically curing at the room temperature; striping a cured filmed obtained in the S4 from the glass substrate, and drawing out two wires as electrodes; and dropping the concentrated solution on the other surface of the cured film obtained in the S3 with a same amount of S4, and statically curing at the room temperature for obtaining the three-layer self-healing flexible strain sensor. The three-layer self-healing structure strain sensor can be prepared without using a repair agent, but can achieve rapid self-repair.

    Carbon material-polymer strain sensitive film and its preparation method

    公开(公告)号:US20180086893A1

    公开(公告)日:2018-03-29

    申请号:US15825109

    申请日:2017-11-29

    Abstract: A carbon material-polymer strain sensitive film and its preparation method are disclosed. The carbon material-polymer strain sensitive film includes multiple layers of carbon sensitive films and multiple layers of polymer films, wherein the multiple layers of carbon sensitive films and the multiple layers of polymer films form a multi-layer composite film in sequence through a layer-by-layer assembly process. The preparation method includes steps of: cleaning, processing a hydrophilic treatment and processing a hydrophobic treatment on a rigid substrate in sequence; preparing a carbon material in dispersion solution and a polymer dispersion solution; through a layer-by-layer self-assembly process, growing the polymer and the carbon material in a form of layer-by-layer on the rigid substrate; transferring the composite film from the rigid substrate to a flexible substrate; and pasting two electrodes at two ends of the composite film and encapsulating with a flexible film.

    Integrated structure of ultrafast response hydrogen sensor

    公开(公告)号:US20250102484A1

    公开(公告)日:2025-03-27

    申请号:US18969096

    申请日:2024-12-04

    Abstract: An integrated structure of an ultrafast response hydrogen sensor includes: a gas path chamber; a gas extractor fixed to a gas inlet of the gas path chamber; and a first hydrogen sensor and a second hydrogen sensor provided inside the gas path chamber; wherein the gas extractor is located in an identical straight line with the first hydrogen sensor and the second hydrogen sensor; the first hydrogen sensor and the second hydrogen sensor each have an Port A and a Port B, and DC voltage is applied to the Port A of the first hydrogen sensor and the Port B of the second hydrogen sensor, and the Port B of the first hydrogen sensor is connected to the Port A of the second hydrogen sensor to form a shared port, and the shared port serves as a voltage output port.

    Three-dimensional folding self-driving flexible respiration monitoring sensor and preparing method thereof

    公开(公告)号:US11234615B2

    公开(公告)日:2022-02-01

    申请号:US16532439

    申请日:2019-08-05

    Abstract: A three-dimensional folding self-driving flexible respiration monitoring sensor and the preparing method thereof is disclosed. In the present invention a first friction unit and a second friction unit are set on a bottom of the box, which comprise a substrate, a conductive electrode layer and a friction layer respectively; the second friction unit is fixed on the bottom of the box; a friction layer of the first friction unit faces a friction layer of the second friction unit; a back plate is set on a substrate of the first friction unit; a balloon is between the box and the back plate; an inlet tube connects the balloon and the box, which is on a side wall of the box; the conductive electrode layer of the first friction layer and the second friction layer are connected to the electrometer respectively. Micro-energy of the respiration is adopted to monitor the breathing.

    Preparation method of three-layer self-healing flexible strain sensor

    公开(公告)号:US11215515B2

    公开(公告)日:2022-01-04

    申请号:US17006782

    申请日:2020-08-28

    Abstract: A preparation method of a three-layer self-healing flexible strain sensor includes steps of: preparing an encapsulating layer composite, so as to obtain a concentrated solution; preparing a strain sensitive layer composite, so as to obtain a thick liquid; dropping the thick liquid on a glass substrate, and statically curing at a room temperature; dropping the concentrated solution on a cured film obtained in the S3, and statically curing at the room temperature; striping a cured filmed obtained in the S4 from the glass substrate, and drawing out two wires as electrodes; and dropping the concentrated solution on the other surface of the cured film obtained in the S3 with a same amount of S4, and statically curing at the room temperature for obtaining the three-layer self-healing flexible strain sensor. The three-layer self-healing structure strain sensor can be prepared without using a repair agent, but can achieve rapid self-repair.

    Three-layer self-healing flexible strain sensor and preparation method thereof

    公开(公告)号:US20180340848A1

    公开(公告)日:2018-11-29

    申请号:US16036612

    申请日:2018-07-16

    Abstract: A three-layer self-healing flexible strain sensor includes: a self-healing sensitive layer, wherein a self-healing encapsulating layer is respectively placed on an upper surface and a lower surface of the self-healing sensitive layer. The self-healing sensitive layer comprises a doped carbon material or a conductive composite. The three self-healing layers of the self-healing strain sensor can quickly repair the internal and external damage caused by the layered structure in a short period of time after the external damage, and does not require external stimulation. The three-layer self-healing structure strain sensor is simple in preparation without using a repair agent, which can achieve rapid self-repair at the room temperature, and can be repeatedly repair. The three-layer self-healing structure increases the strength and modulus of the strain sensor as well as increases the ability of the strain sensor to resist external damage.

Patent Agency Ranking