摘要:
An emitter for a miniature X-ray apparatus comprises an insulating shell, an anode, and a cathode. The insulating shell includes a conical brazing surface, brazed to a conical brazing surface on the anode. The braze consists of a pure titanium layer and a pure tin layer. During brazing, the pure metals react and bond to the insulating shell and create a titanium-tin alloy between the pure layers. Pure tin is sputtered from tin sputter target onto the exposed brazing surfaces of the cathode cap and the anode. The insulating shell is placed in a vacuum chamber of deposition applicator, which deposits an active metal onto the shell brazing surface. In a brazing oven, the anode is placed within insulating shell such that the anode conical brazing surface and the shell conical brazing surface are contacting and aligned with each other. During brazing, the cathode is brought into contact with the insulating shell. The sealed emitters are placed in a sputtering machine's vacuum chamber. A metal is sputtered from a sputtering target to form a metal layer on the exterior of insulating shell.
摘要:
An emitter for a miniature X-ray apparatus comprises an insulating shell, an anode, and a cathode. The insulating shell includes a conical brazing surface, brazed to a conical brazing surface on the anode. The braze consists of a pure titanium layer and a pure tin layer. During brazing, the pure metals react and bond to the insulating shell and create a titanium-tin alloy between the pure layers. Pure tin is sputtered from tin sputter target onto the exposed brazing surfaces of the cathode cap and the anode. The insulating shell is placed in a vacuum chamber of deposition applicator, which deposits an active metal onto the shell brazing surface. In a brazing oven, the anode is placed within insulating shell such that the anode conical brazing surface and the shell conical brazing surface are contacting and aligned with each other. During brazing, the cathode is brought into contact with the insulating shell. The sealed emitters are placed in a sputtering machine's vacuum chamber. A metal is sputtered from a sputtering target to form a metal layer on the exterior of insulating shell.
摘要:
A cathode for a miniature X-ray device includes an insulating shell, a cathode and an anode. The cathode includes a focusing cup formed into an end. The focusing cup can include a thin metal layer that conforms to an inner surface of the cathode. An emitting material having a low work function, such as diamond, is deposited directly onto the internal surface of the focusing cup. The anode has a flat receiving surface for collecting electrons emitted from the anode. An interior coating is applied as a circumferential belt on the interior surface of the insulating shell. The interior coating, formed of a negative secondary emission yield material, extends lengthwise in the region of the cathode to an anode gap, covering the region of the insulating shell most likely to be subject to stray electrons emitted from the cathode.
摘要:
An insulating housing shell for a miniature x-ray emitter is provided. The housing shell is cut from a quartz monocrystal which is a suitable material for the insulating housing shell due to its resistivity and dielectric strength properties. The x-ray emitter can be inserted into a subject's body to deliver x-ray radiation. The emitter includes a cable, having a proximal and a distal portion. The insulating housing shell is coupled to the distal portion of the cable, and an anode and a cathode are disposed within the insulating housing shell. The cathode has a granular surface and is operative with the anode and the connector to produce the x-ray radiation. The cathode is composed of a material that also allows it to act as a getter.
摘要:
An apparatus and a method for treatment of benign prostatic hyperplasia are disclosed. The apparatus includes an applicator piece carrying a set of electrodes shaped and positioned to create a substantial electric field in the volume of hyperplasia and a pulse generator adapted for delivery of electrical pulses above the upper electroporation limit for the neoplastic cells. The amplitude, duration and number of the electrical pulses are generally selected to cause necrosis of a significant fraction of the volume of benign prostatic hyperplasia. The apparatus may include a high frequency system for heating the prostatic tissue and a cooling system for cooling the urethra. The combined action of heating and cooling may increase the temperature of the prostate cells to 45 degrees C. to 55 degrees C., while keeping the urinary tract at a temperature 15 degrees C. to 20 degrees C. This temperature distribution can increase the selectivity of the treatment by increasing susceptibility of the neoplastic cells to the electroporation treatment and decreasing it for the normal urethral tissues.
摘要:
An apparatus and method for treatment of benign prostatic hyperplasia is disclosed wherein the apparatus includes an applicator having a probe having proximal and distal probe sections wherein the proximal and distal probe sections each define an axis and wherein the axes are not collinear.
摘要:
A method of treating a human body by destroying tissue cells is provided. The method involves positioning an electric field generating element near a target area containing tissue cells to be killed in the human body, and treating the human body by applying electrical pulses through the positioned electric field generating element in an amount above an upper limit of electroporation to irreversibly open pores in membranes of the tissue cells in the target area, thereby killing the tissue cells in the target area.
摘要:
A method, apparatus and a system for thermally-assisted pulsed electromagnetic field stimulation for treatment of osteoarthritis are disclosed. In one embodiment, the system comprises a multi-coil applicator adapted for positioning near or around of the treated joint, a pulse generator functionally coupled to the applicator, a power supply, and a feedback loop for stabilizing the temperature of the joint. The feedback loop includes a heating element, a temperature sensor and an electronic controller for maintaining the temperature of the joint in the range of 38 to 42 degree C. At elevated temperatures the healing effect of PEMF stimulation on the cartilage is maximized and overall efficiency of the treatment is improved. To produce a high electric field, the coils of the applicator are made with a low number of turns, for example less than 5 turns, and are spatially arranged to cover the whole joint without “dead” zones.
摘要:
An apparatus and method for performing non-invasive treatment of the human face and body by electroporation in lieu of cosmetic surgery is provided. The apparatus comprises a high voltage pulse generator and an applicator having two or more electrodes in close mechanical and electrical contact with the patient's skin for applying the pulses to the patient's skin. The applicator may consist of two pieces with one electrode having a sharp tip and another having a flat surface. High voltage pulses delivered to the electrodes create at the tip of the sharp electrode an electric field high enough to cause death of relatively large subcutaneous fat cells by electroporation. Moving the electrode tip along the skin creates a line of necrotic subcutaneous fat cells, which later are metabolized by the body. Multiple applications of the electrode along predetermined lines on the face or neck create shrinkage of the skin and the subcutaneous fat volume underlying the treated area.
摘要:
An apparatus and method for performing non-invasive treatment of the human face and body by electroporation in lieu of cosmetic surgery is provided. The apparatus comprises a high voltage pulse generator and an applicator having two or more electrodes in close mechanical and electrical contact with the patient's skin for applying the pulses to the patient's skin. The applicator may consist of two pieces with one electrode having a sharp tip and another having a flat surface. High voltage pulses delivered to the electrodes create at the tip of the sharp electrode an electric field high enough to cause death of relatively large subcutaneous fat cells by electroporation. Moving the electrode tip along the skin creates a line of necrotic subcutaneous fat cells, which later are metabolized by the body. Multiple applications of the electrode along predetermined lines on the face or neck create shrinkage of the skin and the subcutaneous fat volume underlying the treated area.