摘要:
An augmented reality system is configured to identify and track user gestures, sounds, and interaction with physical objects to designate active zones. These active zones may be allocated additional processing and functional resources. Gestures may include particular hand or body motions, orientation of a user's head, and so forth. Sounds may include clapping, clicks, whistles, taps, footfalls, humming, singing, speech, and so forth. Active areas as well as inactive areas of lesser or no interest may be designated as well.
摘要:
A display system having a modulated light source is configured to include one or more non-visible wavelengths as part of the display sequence. In one implementation a color wheel, configured to modulate the wavelengths emitted by a projector, includes an infrared (IR) segment, allowing for projection of an IR image. The wavelength modulated non-visible light may be spatially modulated to generate a structured light pattern, for signaling, to synchronization with other devices, and so forth.
摘要:
An architecture includes a system to create an augmented reality environment in which images are projected onto a scene and user movement within the scene is captured. The augmented reality environment is hosted within a surrounding area in which various ambient conditions, external to the augmented reality environment, persist. The architecture monitors the external conditions and controls secondary devices that selectively modify the conditions as desired in cooperation with operation of the augmented reality environment to effectively enhance user experience. Alternatively or additionally, the architecture may inform the user of what changes to make, and the user manually makes the adjustments.
摘要:
An architecture is provided to integrate multiple augmented reality environments to expand user experiences that might otherwise be limited in a single augmented reality environment. The architecture includes multiple augmented reality functional nodes located in separate locations to generate augmented reality environments within respective locations. The nodes are communicatively coupled together through a peer network, via cloud services, or other arrangements. The community of environments allows data, such as captured images, to be ported from one location to another, thereby allowing users to share in common experiences. Examples of such experiences might include team software coding, playing software games, virtually extending line-of-sight beyond physical boundaries, and controlling remote locations by virtually placing oneself in those locations.
摘要:
An architecture has one or more systems for generating augmented reality environments configured to access cloud services over a network. A user is authenticated within the environments, and once authenticated is permitted to interact with the cloud services using the augmented reality environments as well as client resources provided within the environments. The client resources may include devices or things that are primary intended for use within the environments, and devices or things that are not typically associated with augmented reality environments. The architecture enables the client resources to function as thin client interfaces to the cloud services.
摘要:
Augmented reality environments allow users in their physical environment to interact with virtual objects and information. Augmented reality applications are developed and configured to utilize local as well as cloud resources. Application management allows control over distribution of applications to select groups or all users. An application programming interface allows simplified control and distribution of tasks between local and cloud resources during development and post-development operation. This integration between local and cloud resources along with the control afforded by application management allows rapid development, testing, deployment, and updating of augmented reality applications.
摘要:
An augmented reality environment allows interaction between virtual and real objects. By monitoring user actions with the augmented reality environment various functions are provided to users. Users may buy or sell items with a gesture, check inventory of objects in the augmented reality environment, view advertisements, and so forth.
摘要:
Devices and techniques are described for generating three-dimensional (3D) models of objects. Depth data acquired from a depth camera system is used with data about surface normals to generate a 3D model of the object. The depth camera system may use cameras or projectors with different baseline distances to generate depth data. The use of different baseline distances may improve accuracy of the depth data. The data about surface normals may be calculated from images acquired when the object is illuminated from different angles. By using the depth data and relative depth changes from the surface normal data, high resolution spatial data may be generated at high frame rates. Data from multiple baseline distances may also be combined to improve performance.
摘要:
An augmented reality environment allows interaction between virtual and real objects. By monitoring user actions with the augmented reality environment various functions are provided to users. Users may buy or sell items with a gesture, check inventory of objects in the augmented reality environment, view advertisements, and so forth.
摘要:
An augmented reality environment allows interaction between virtual and real objects. By monitoring user actions with the augmented reality environment various functions are provided to users. Users may buy or sell items with a gesture, check inventory of objects in the augmented reality environment, view advertisements, and so forth.