摘要:
Provided are an apparatus and method of calibrating azimuth of a mobile device. The apparatus includes: a magnetic field measuring unit having a plurality of magnetic sensors aligned in a constant angle interval on the mobile device and measuring magnetic field data indicating magnitudes of a magnetic field in different directions; and a controller generating a calibration table indicating a correspondence between an actual magnetic field trajectory formed by the magnetic field data and a theoretical magnetic field trajectory and calibrating azimuth of the mobile device using the calibration table.
摘要:
Provided are an apparatus and method of calibrating azimuth of a mobile device. The apparatus includes: a motor; a magnetic field measuring unit disposed in the mobile device and measuring magnetic field data indicating magnitudes of a magnetic field in different directions while being rotated by the motor; and a controller driving the motor, generating a calibration table indicating a correspondence between an actual magnetic field trajectory formed by the magnetic field data and a theoretical magnetic field trajectory and calibrating azimuth of the mobile device using the calibration table.
摘要:
There are provided a method and apparatus for determining a geomagnetic field by using a compass and a method and apparatus for determining an azimuth angle of a moving object using the method and apparatus for determining a geomagnetic field. The method of determining a geomagnetic field by using a compass includes defining an allowable magnetic field range used to determine a valid geomagnetic region; calculating a magnitude of a magnetic field in a geomagnetic-field validity test region by using a compass; and if the magnitude of the magnetic field is within the allowable magnetic field range, determining that the geomagnetic-field validity test region is the valid geomagnetic region, and if not, determining that there is applied an external magnetic field disturbance. Accordingly, since an error of an azimuth angle of the compass due to an external magnetic field disturbance can be determined, it is possible to accurately detect a valid azimuth angle of the compass. In addition, since an allowable magnetic field range is determined based on a variation of magnetic field detected by a compass rather than a conventional method that simply compares a magnetic field and a geomagnetic field, it is possible to accurately determine the geomagnetic field.
摘要:
Provided are an apparatus and method of calibrating azimuth of a mobile device. The apparatus includes: a magnetic field measuring unit having a plurality of magnetic sensors aligned in a constant angle interval on the mobile device and measuring magnetic field data indicating magnitudes of a magnetic field in different directions; and a controller generating a calibration table indicating a correspondence between an actual magnetic field trajectory formed by the magnetic field data and a theoretical magnetic field trajectory and calibrating azimuth of the mobile device using the calibration table.
摘要:
There are provided a method and apparatus for determining a geomagnetic field by using a compass and a method and apparatus for determining an azimuth angle of a moving object using the method and apparatus for determining a geomagnetic field. The method of determining a geomagnetic field by using a compass includes defining an allowable magnetic field range used to determine a valid geomagnetic region; calculating a magnitude of a magnetic field in a geomagnetic-field validity test region by using a compass; and if the magnitude of the magnetic field is within the allowable magnetic field range, determining that the geomagnetic-field validity test region is the valid geomagnetic region, and if not, determining that there is applied an external magnetic field disturbance. Accordingly, since an error of an azimuth angle of the compass due to an external magnetic field disturbance can be determined, it is possible to accurately detect a valid azimuth angle of the compass. In addition, since an allowable magnetic field range is determined based on a variation of magnetic field detected by a compass rather than a conventional method that simply compares a magnetic field and a geomagnetic field, it is possible to accurately determine the geomagnetic field.
摘要:
Provided are an apparatus and method of calibrating azimuth of a mobile device. The apparatus includes: a motor; a magnetic field measuring unit disposed in the mobile device and measuring magnetic field data indicating magnitudes of a magnetic field in different directions while being rotated by the motor; and a controller driving the motor, generating a calibration table indicating a correspondence between an actual magnetic field trajectory formed by the magnetic field data and a theoretical magnetic field trajectory and calibrating azimuth of the mobile device using the calibration table.
摘要:
Provided is a method of generating a magnetic field map including obtaining magnetic field information, the magnetic field information being information on a magnetic field affecting a mobile body, for each position of the mobile body, and building a magnetic field map based on the magnetic field information for each position of the mobile body. The pose of a mobile body can be statistically checked by the probability obtained using the difference between the magnetic field information observed from the magnetic field map and the actually measured magnetic field information. Although the pose of the mobile body is estimated using a camera that is sensitive to an illumination state where the mobile body is placed, the pose of the mobile body can be relatively accurately checked using the magnetic field map obtained in a situation regardless of illumination, with being less affected by the illumination state where the mobile body is placed. Thus, the pose of the mobile body can be checked with reliability.
摘要:
A method of controlling an intelligent system using an artificial mark and method for employing the same. The intelligent system includes: an image pickup unit which obtains an image taken for a driving place; a main control unit which calculates a projective invariant of an artificial mark detected from an image taken for a driving place and analyzes the position of the intelligent system using global location information of the detected artificial mark in the driving place obtained by the calculated projective invariant and location information between the intelligent system and the detected artificial mark; and a driving control unit which controls driving of the intelligent system according to the position information of the intelligent system analyzed in the main control unit.
摘要:
A motion estimation method and system for a mobile body are provided. The method includes: obtaining magnetic field information from compass information of the mobile body; comparing the magnetic field of the mobile body with a predetermined value and determining whether a position of the mobile body belongs to a specific region according to the comparison result; and estimating a direction of the mobile body by determining whether a compass azimuth angle is used for direction estimation of the mobile body according to the determination result. The system, in which a gyro, odometers, and compasses are installed, comprises: a magnetic field calculator calculating the magnitudes of magnetic fields of the mobile body; a magnetic field comparator obtaining differences between the magnitudes of the magnetic fields and the magnitude of the geomagnetic field and comparing the differences with the first threshold value; a geomagnetic region determiner determining whether a position where the mobile body exists belongs to a region where the geomagnetism works according to the comparison result; and a moving direction estimator estimating a moving direction of the mobile body by determining whether or not to use azimuth angles of the compasses for direction estimation of the mobile body according to the determination result.
摘要:
A method and apparatus for detecting a free fall of an electronic device. The method includes: sensing a falling acceleration of the electronic device using an acceleration sensor; determining whether the sensed falling acceleration is less than a predetermined threshold; when the sensed falling acceleration is less than the predetermined threshold, determining whether the falling acceleration is a statistical constant, which has a statistical significance, and is maintained for a predetermined time; and when the falling acceleration is a statistical constant and maintained for a predetermined time, determining that the electronic device falls freely. Accordingly, it is possible to exactly detect a free fall of an electronic device, irrespective of an error of the acceleration of gravity generated when a falling acceleration of the electronic device is measured, due to ambient conditions, e.g., a temperature change and a rotation acceleration generated when the electronic device rotates.