Abstract:
An ink composition useful for digital offset printing applications includes a colorant and a radiation-curable water-dilutable compound. A process for variable data lithographic printing includes applying a dampening fluid to an imaging member surface; forming a latent image by evaporating the dampening fluid from selective locations on the imaging member surface to form hydrophobic non-image areas and hydrophilic image areas; developing the latent image by applying an ink composition comprising an ink component to the hydrophilic image areas, the ink composition comprising a radiation-curable water-dilutable compound, a colorant component, and optionally water; and transferring the developed latent image to a receiving substrate, wherein the ink transfer efficiency is 90% or higher.
Abstract:
A method for preparing a pigment dispersion includes milling a starting pigment dispersion containing a pigment and optionally a carrier and a dispersant with milling media having an average particle size of about 100 μm or less, until a final pigment dispersion having at least one of a desired pigment average particle size and a desired pigment particle size distribution is obtained; optionally separating the milling media from the final pigment dispersion; and optionally diluting the final pigment dispersion to obtain a desired pigment particle concentration.
Abstract:
A system and method are provided for producing variable pearlescent image elements or portions on image receiving media substrates using a variable digital data offset lithographic architecture which provides for varying lithographic images between cycles of a marking device. Pearlescent inks are provided with a solid particle pearlescent pigment components in a proportion of at least 30% by weight suspended in solution in an ink composition. Pearlescent inks are provided with a solid particle pearlescent pigment components having particle sizes in excess of ten microns suspended in solution in the ink composition. The disclosed systems and methods provide for variable pearlescent image elements or portions to be formed on an image receiving medium substrate separate from, or in combination with, other ink image elements or portions applied using other inks in a single device, and/or in a single pass of the image receiving media substrates through an image forming system.
Abstract:
The disclosed embodiments are directed to a composition of an inverse emulsion acrylate ink for use in variable data digital lithographic image forming devices and methods for preparing and using the ink. The disclosed inverse emulsion acrylate ink includes an acrylate monomer, oligomer, polymer, or mixtures thereof that is a continuous phase, and water dispersed as an emulsion in the continuous acrylate phase. The disclosed inverse emulsion acrylate ink includes one or more of a color pigment component, a rheology modifying agent, a stabilizing agent, and a photoinitiator component. The water may be supplemented with a surfactant to lower a surface tension of the water.
Abstract:
An aqueous latex ink includes a polymer latex having a particle size of less than about 100 nm. A method of making an aqueous latex ink includes emulsifying a polymer without the use of a surfactant to prepare a latex having a particle size of less than 100 nm. A method of printing an image on a substrate includes applying an aqueous latex ink to an intermediate receiving member using an inkjet printhead, spreading the ink onto the intermediate receiving member, inducing a property change of the ink, and transferring the ink to a substrate, wherein the ink comprises a latex having a particle size of less than about 100 nm.
Abstract:
A system and method are provided for producing variable pearlescent image elements or portions on image receiving media substrates using a variable digital data offset lithographic architecture which provides for varying lithographic images between cycles of a marking device. Pearlescent inks are provided with a solid particle pearlescent pigment components in a proportion of at least 10% by weight suspended in solution in an ink composition. Pearlescent inks are provided with a solid particle pearlescent pigment components having particle sizes in excess of ten microns suspended in solution in the ink composition. The disclosed systems and methods provide for variable pearlescent image elements or portions to be formed on an image receiving medium substrate separate from, or in combination with, other ink image elements or portions applied using other inks in a single device, and/or in a single pass of the image receiving media substrates through an image forming system.
Abstract:
Disclosed herein are curable solid inks which are solid at room temperature and molten at an elevated temperature at which the molten ink is applied to a substrate. In particular, the curable solid ink of the present embodiments comprises a cyclohexyl-based crystalline gellant that impart self-leveling capabilities to the inks, where the cyclohexyl-based crystalline gellant have a structure of Formula I: wherein each X, Y, p, q, R1, R2, R3, and R4 are as defined herein.
Abstract:
A system and method are provided for producing Magnetic Ink Character Recognition (MICR) characters on image receiving medium substrates using a variable digital data offset lithographic architecture which provides for varying lithographic images between cycles of a marking device. MICR inks are provided with a solid particle magnetizable pigment components in a proportion of at least 20% by weight suspended in solution in the ink composition. MICR inks are provided with a solid particle magnetizable pigment components having particle sizes in excess of one micron suspended in solution in the ink composition. The disclosed systems and methods provide for MICR characters to be formed on an image receiving medium substrate over background images applied using other inks in a single device, and/or in a single pass of the image receiving medium substrate through the device.
Abstract:
An aqueous inkjet ink includes a latex having a bimodal molecular weight distribution. A method of making an aqueous inkjet ink includes adding a dispersion of surfactant and carbon black to a reactor, adding a latex having a bimodal molecular weight to the reactor resulting in a reaction mixture, and homogenizing the reaction mixture, forming the ink. A method of printing an image to a substrate includes applying an aqueous inkjet ink onto an intermediate receiving member using an inkjet printhead, spreading the ink onto the intermediate receiving member, inducing a property change of the ink, and transferring the ink to a substrate, wherein the ink includes a latex having a bimodal weight distribution.